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1. Program information

Program Names: MPNE1D_41.FOR
Author:  Christopher J. Neville
Language: FORTRAN90 (ANSI standard)
Version: 4.1

Date: August 2004

Abstract:

This manual documents a general analytical solution for one-dimensional solute transport with
multiprocess nonequilibrium. The solution is described in Neville et al. (2000).

The solution is capable of representing the following physical transport processes:
One-dimensional advection;

One-dimensional dispersion;

Dual porosity mobile-immobile mass transfer;

Combined equilibrium and Kkinetic sorption; and

First-order transformation reactions.

The solution is capable of simulating general initial and boundary conditions, including:
¢ An initially contaminated domain;
o Specified concentration or flux-type inflow boundary conditions, with a general time-
varying reservoir concentration; and
e A semi-infinite domain, or a finite domain with zero gradient of specified concentration
at the outflow boundary.

The solution is evaluated by numerical inversion of the Laplace-transformed solution, using the
accurate and robust algorithm of De Hoog et al. (1982). The solution is coded in standard
FORTRANT77 with updating to FORTRAN90. The code has been compiled without
modifications with PC (MS, Lahey F77L3, Salford FTN77), VAX and UNIX-based compilers.

This version of the code has been extended to simplify the generation of concentration
distributions at specified times (i.e., profiles) and concentration histories at specified locations
(i.e., breakthrough curves). The code has also been modified to report dissolved concentrations
in both the mobile and immobile regions.



2. Terminology

Cnm:
Cim:
Smi :
Sma2 :
Simt.:

Simz:

Om :

concentration in mobile region dissolved phase [ML™]

concentration in immobile region dissolved phase [ML™]
concentration at instantaneous sorption sites in mobile region [MM™]
concentration at rate-limited sorption sites in mobile region [MM™]
concentration at instantaneous sorption sites in immobile region [MM™]
concentration at rate-limited sorption sites in immobile region [MM™]
time elapsed since beginning of solute release [T]

Laplace transformed variable for time [T]

distance from inflow boundary [L]

length of the domain for finite case [L]

bulk density of porous medium [ML®]

Darcy flux [LT]

hydrodynamic dispersion coefficient [L*T™]

total water content [-]

proportion of pore water that is mobile

_On
o

mobile water content [-] (0, = ¢ 0)
immobile water content [-] (Oin = (1-¢) 0)
mass fraction of sorbent in contact with the mobile region dissolved phase [-]

first-order mass transfer coefficient [T™]



Kmo :
Kima :
Am -
Asmi:

XSmZ:

XSiml .
Asim2

Co(t) :

CL:

mobile region fraction of instantaneous sorption sites [-]

immobile region fraction of instantaneous sorption sites [-]

mobile region equilibrium sorption coefficient [L’M™]

immobile region equilibrium sorption coefficient [L3M™]
weighted-average sorption coefficient (Kp = fKy, + (1-)Kin) [LM™]
mobile region first-order kinetic desorption coefficient [T™]

immobile region first-order kinetic desorption coefficient [T™]

mobile region dissolved phase first-order decay rate [T]

mobile region instantaneous sorption sites first-order decay coefficient [T™]
mobile region rate-limited sorption sites first-order decay rate [T™]
immobile region dissolved phase first-order decay rate [T™]

immobile region instantaneous sorption sites first-order decay rate [T?]
immobile region rate-limited sorption sites first-order decay rate [T]
solute concentration in inflow reservoir [ML™]

inflow boundary coefficient

=0: Type I inflow boundary condition

=1: Type 3 inflow boundary condition

solute concentration in outflow reservoir [ML®], for a finite column with specified
outflow concentration



3. Theory
3.1.Conceptual model

The theory implemented in the analytical solution is defined in Brusseau et al. [1989] and
Brusseau et al. [1992] as the multiprocess nonequilibrium model (MPNE). A discussion of the
conceptual model for the analytical solution is given in Neville [1992]. The physical system
represented is shown in Figure 1. The solution is based on the following assumptions:

e The domain is represented as a dual porosity continuum. Mass transfer between the
mobile and immobile regions is modelled as a first-order mass transfer reaction.

e Sorption occurs at both equilibrium and rate-limited sites. At the equilibrium sites,
sorption is instantaneous and reversible and is governed by a linear isotherm. At the
rate-limited sites, sorption is represented as a first-order reaction. The mobile and
immobile regions are characterized by separate sorption properties.

e Transformation reactions are modelled as first-order decay processes. If microbially-
mediated reactions are represented using this approach, then it is tacitly assumed that
they are not limited by substrate availability (e.g. oxygen is in unlimited supply) and
that contaminant concentrations are relatively low (Criddle et al. [1991]). For
maximum generality, the dissolved and sorbed phases in the mobile and immobile
regions are characterized by separate decay properties.

e The behaviour of the transformation products or their impact on the parent chemical
are neglected.

Several additional assumptions are invoked for the derivation of the one-dimensional analytical
solution presented here:

e The material properties are spatially uniform and temporally constant.

e The Darcy flux is steady, one-dimensional and spatially uniform. The solution has
been revised to accommodate no Darcy flux.

e Longitudinal dispersion is assumed to be a Fickian process, characterized by a constant
dispersion coefficient. Dispersion in the transverse directions is neglected.

e The initial concentrations in the domain are uniform and are specified separately for
the dissolved and sorbed phases.
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3.2.Governing equations

The MPNE model is cast in terms of six concentrations: one dissolved phase and two sorbed
phase concentrations for each of the mobile and immobile regions. In the following
development, use is made of mass balance equations and constitutive relations to derive the
six equations, which comprise the MPNE model.

Mobile region

Within the mobile region, the MPNE model accounts for advective-dispersive transport,
mobile-immobile mass transfer, equilibrium and rate-limited sorption and first-order
transformation reactions. The statement of mass conservation for the dissolved phase in the
mobile region is written as:

0uCn) , pSn) _ _ 23,

ot ot ax 'Gﬂm'GﬂSm'Gim

The left-hand side of the mass balance equation represents the time rate of change of mass in the
dissolved and sorbed phases in the mobile region. In this expression the term f designates the
mass fraction of sorbent that is accessible to the dissolved phase in the mobile region. Solute in
the sorbed phase is partitioned between the equilibrium and rate-limited sorption sites:

Sm = Sm1+Sm2

The first term on the right-hand side, Jn, is the advective-dispersive mass flux in the dissolved
phase and is defined as:

O0Cn
OX

Jm:'emD +qu

For the first-order mass transfer model, the sink term representing mobile-immobile interaction is
expressed as:

Gim = a(Cm'Cim)



The second and third terms on the right-hand side, G, and G;sn, are sinks representing first-
order transformation reactions in the dissolved and sorbed phases. The first-order transformation
sink terms are written as:

Gﬂm = Hmﬂ“mcm

Ggm = fp(j’SmlSml + lszsmz)

Assembling all of the terms in the original mass balance equation yields:

g(gmcm)—’_ fp %_i_% :_ﬁ(qcm)-i_i HmDacm _Hmﬂ’mcm
ot ot ot OX OX OX

The sorbed phase concentration at the instantaneous sorption sites is defined in terms of the
following equilibrium constitutive relation:

Sml = FmeCm
In this relation Fy, represents the mass fraction of sorption sites in the mobile region where

sorption is instantaneous. The sorbed phase concentration at the rate-limited sites is defined in
terms of a mass balance equation:

0S
artnz = Km2 [(1_ I:m )KmCm - sz]_ﬂ’SmZSmZ

Substituting for the sorbed phase concentrations and invoking the assumption of constant
material properties yields the final form of the transport equation for the mobile region:

(em + prme)agtm + fpkz[(l_ I:m )KmCm _sz]:
oc. o%C,
-q ox +6mD 8X2 _(emﬁ“m + fpﬂ’SmlFme )Cm _a(Cm _Cim)



Immobile region

The governing equations for the immobile region are analogous to those presented for the mobile
region, with the exception that advection and dispersion are not considered. The statement of
mass conservation for the immobile region is written as:

(9inCin) , (A= F)pSim) _
ot

- im~ im T Gim
ot Giim - Gusim+ G

The left-hand side of the mass balance equation represents the time rate of change of mass in the
dissolved and sorbed phases in the immobile region. In this expression the term (1-f) designates
the mass fraction of sorbent that is accessible to the dissolved phase in the immobile region.
Solute in the sorbed phase is partitioned between the equilibrium and rate-limited sorption sites:

Sim = Sim1+ Sim2

The mobile-immobile mass transfer term, Giy, is defined by equation (6). The remaining terms on
the right-hand side are written as:

Giim = Oim AimCim
Gsim = (1_ f)P (/13im13im1+/15im2 Simz)
In these expressions the term (1-f) designates the mass fraction of sorbent that is accessible to the
dissolved phase in the immobile region. The expressions for the sinks are similar to those
presented for the mobile region, noting that the sign of the mobile-immobile mass transfer term is

reversed.

Assembling all of the terms in the mass balance equation for the immobile region yields:

0 oS, oS,
ot ( im ™~ im )+ ( )p( ot + ot j im7Yim >~ im



The sorbed phase concentrations at the instantaneous and rate-limited sorption sites are defined
by:

Sim = FinKinCim

0S;i

7”“2 = Kinz[1= Fip )KinCiry = Simz |- Asima Simz
In these relations Fi, represents the mass fraction of sorption sites in the immobile region where
sorption is instantaneous. Substituting for the sorbed phase concentrations and invoking the
assumption of constant material properties yields the final form of the transport equation for the
immobile region:

O+ 1P} 2 (= Wl Fi Ko =51 ] -

im~im

—(6, 4 +@-f)pi F. K. )C, +a(C_ —C.
Sim1® im " Yim im m im

m“-im

The governing equations presented here differ from equations (4) and (5) of Brusseau et al.
[1992]. In particular, their equations are missing decay terms for the equilibrium-sorbed phases.
The equations defining the concentrations in the equilibrium-sorbed phases are more correctly
interpreted here as constitutive relations rather than mass balance equations.
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3.3.Special cases

Special care has been taken to ensure that the analytical solution yields correct results when any
or all of the MPNE processes are neglected.

Two-region model (Physical nonequilibrium only)

The solution collapses to the two-region model when only equilibrium sorption is considered
(setting F, = Fi, = 1.0 in the governing equations).

Two-site model (Sorption nonequilibrium only)

The solution collapses to the two-site model when all of the pore water is considered to be
mobile and all of the sorbent is accessible to the solute (setting ¢ = f = 1.0 in the governing
equations).

LEA (Local Equilibrium Assumption)

The solution collapses to the LEA (one-region/one-site) conceptual model when all of the pore

water is considered to be mobile and all of the sorbent is accessible to the solute (i.e., ¢ = f = 1.0)
and when only equilibrium sorption is considered (i.e., F, = Fin = 1.0).

11



3.3.Initial and boundary conditions
Initial conditions

The model of Brusseau et al. [1992] assumes that the domain is initially devoid of contaminants.

The initial conditions considered by the analytical solution are somewhat more general. It is
assumed that the domain is uniformly contaminated and that the initial concentrations in each of
the compartments are specified independently:

Cn(x,0) = Ch,
Cim(X!O) = C?m
Sm(0) = She

Sim2(0) = Shne

If the initial condition of the domain is such that C,,° = 0, and has existed as such for a long
period of time, then the following initial concentrations may be assigned:

Cn(x,0) = Cy
Cim(XaO) = C(l)m
Sm(0) = K,C

m

Sim(0) = KimC'O

im

12



Inflow boundary condition

The inflow boundary condition is represented by a general form capable of representing either
specified concentration or specified mass flux conditions. Adopting the notation of Leij et al.
[1991], the inflow boundary condition is expressed as:

JCn
1C, (0.)- 0 D=2(0.) = 4C,()
where:
o0 =0, specified concentration (Dirichlet) condition at the inflow boundary
o0 = 1, specified mass flux (Cauchy) condition at the inflow boundary
and

Co(t)= concentration in the influent reservoir

Outflow boundary condition

The analytical solution is capable of representing transport in either semi-infinite or finite
domains.

A semi-infinite domain is specified by the following outflow boundary condition:
Cm(OO,t) = C(r)n EXP{' imt}

In the original version of the solution, a finite domain could be specified with a Type Il
(specified-gradient) boundary condition at the outlet:

OCn

MLy =0

The solution has been revised to accommodate the additional case of a finite column with a
Type | (specified-concentration) boundary condition at the outlet:

C.(Lh =C,

13



4. Evaluation of the solution

The final solution is evaluated by numerical inversion of the analytical solution in Laplace-
transform space. The inversion is carried out using the algorithm of De Hoog et al. (1982).
Extensive testing of this algorithm indicates that it yields accurate and robust solutions.

The De Hoog et al. algorithm approximates the inverse Laplace transform in the form of a
Fourier series according to the formula:

C.(x,a) ikt

C,(x1) = % EXP{at }x Re[T+ > Ch(x, a+—)
k=1

The approximate inverse is a function of two parameters, T and a. The parameter T defines the
period of the approximating Fourier series. Our experience indicates that the greatest accuracy is
achieved when T is re-calculated for every time t according to the following formula:

T =028t

The parameter a is related to the singularities in the transformed solution. Our implementation
utilizes the estimator of Crump (1976):

As implemented here, the inversion algorithm requires four inversion parameters, ¢, E,, T, and
the number of terms in the series, M. Following the suggestions of De Hoog et al. (1982) and
our own extensive numerical experiments, the following parameter values are considered to be
nearly optimal.

Parameter Value
a 0.0
E, 1.E-4
T 0.8t
M 7

In order to simplify use of the solution, the parameters for the inversion are calculated internally
within a "driver" subroutine for the main inversion subroutine. The parameters listed above are
presently hard-wired in the inversion driver routine. The inversion code is attached here as a
separate code to the analytical solution, using the Fortran INCLUDE statement. This simplifies
the use of alternative inversion routines; for example, only minor modifications are required to
use the inversion algorithms of Stehfest and Talbot.

14



5. Testing of the solution

The analytical solution has been tested against the results of other analytical and numerical
solutions. For the simple cases without rate-limiting transport processes, the solution has been
compared with exact analytical solutions for finite and semi-infinite domains. In all cases, the
results obtained with MPNE1D matched the analytical solutions very closely. The results of
these tests are not presented here, but are available upon request.

For the full implementation of the MPNE formulation, the solution is tested against previously
published numerical simulations of the column experiments of van Genuchten (van Genuchten
[1974], van Genuchten and Wierenga [1976] and [1977], van Genuchten et al. [1977]).
Brusseau et al. [1989 and 1992] simulated the column experiments of van Genuchten using a
one-dimensional finite difference implementation of the model. The numerical model employed
centered-in-time weighting. In this report we reproduce Brusseau and co-workers’ results for
only one of the column experiments, #1-4. Figure 2 shows the results of the analytical solution
and the numerical results of Brusseau et al. [1989] for the experiment. The results demonstrate
excellent agreement between the present solution and the numerical solution.

15
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6. Instructions for using the computer programs
6.1.Running the computer program

The source code can be compiled using any FORTRANO90 compiler. The executable version of
the program distributed with this manual was generated with the Lahey LF90 compiler.

The code is most easily executed from the Command Line (also referred to as the DOS-prompt).
At the DOS-prompt, type:

mpneld 41

The user is then prompted for the JOBID, which is the name of the data file - without any
extension. The program automatically uses the following file names and extensions:

JOBID.inp : datafile
JOBID.out : output listing, including a full listing of the input parameters
JOBID.dat : outputlisting for concentrations profiles or breakthrough curves stripped

of all comments and headings (plot file).
All three of these files are ASCII files.

The plot file can be imported directly into any graphics or spreadsheet program for plotting. The
format of the file is:

COL 1:time; COL 2: distance; COL 3: mobile concentration; COL 4: immobile concentration.

17



6.2.Input data file

All input is in free-format.

1.

1.

8.

9.

Basic data

TITLE:

. RHOB (po):
. THETA (0):

.Q ()

.D (D):

. PHI (¢):

F (f):

ALFA (q):

FM (Fm):

10. FIM (Finy):

11. KM (Kp):

12. KIM (Kim):

13. KM2 (Krm2):

14. KIM2 (Kimo):

up to 70 alphanumeric characters
dry bulk density [ML™]

total water content [L3L ]

Darcy flux [LT]

longitudinal dispersion coefficient [L*T™]

. MPNE parameters

fraction of pore water that is mobile [-]

fraction of sorbent accessible to dissolved phase in mobile region [-]
first-order mass transfer coefficient [T™]

fraction of sites in mobile region where sorption is instantaneous [-]
fraction of sites in immobile region where sorption is instantaneous [-]
sorption partitioning coefficient for mobile region [L3M™]

sorption partitioning coefficient for immobile region [L*M™]

sorption rate constant for mobile region [T™]

sorption rate constant for immobile region [T™]

18



3. Decay parameters

15. LM (\n):

16. LM1 (Asma):
17. LM2 (Asma):
18. LIM (Aim):
19. LIM1 (Agimy):

20. LIM2 (7\'Sim2):

decay rate, dissolved phase in mobile region [T™]

decay rate, instantaneous sorption sites in mobile region [T]
decay rate, rate-limited sorption sites in mobile region [T?]
decay rate, dissolved phase in immobile region [T*]

decay rate, instantaneous sorption sites in immobile region [T]

decay rate, rate-limited sorption sites in immobile region [T™]

4. Boundary condition data

21. IBC:

22. NP:

23. TI(n), CI(n):

24. OBC:

25. LENGTH:

26. CL:

inflow boundary condition type
= 1: Type | - specified concentration (5 = 0)
= 3: Type Il - specified mass flux, well-mixed reservoir (6 = 1)

number of points defining inflow concentration history co(0,t)

(time, concentration) inflow concentration point; [T],[ML]
- time elapsed since start of injection
- NP values, Specify one pair per line of the input file

outflow boundary condition
= 1: Semi-infinite domain
= 2: Finite domain, Type Il
= 3: Finite domain, Type |

length of domain
A value must be supplied, but is used only when a finite domain is specified
(OBC=2o0r 3)

concentration at outflow boundary, [ML™]

A value must be supplied, but is used only when a finite domain with Type |
outflow boundary condition is specified (OBC=3)

19



5. Locations and times for calculation of solution

Note: This version of MPNE1D has been extended to simplify the calculation of concentration
profiles at selected times, and the calculation of concentrations histories at selected locations
(breakthrough curves). The input requirements have been modified slightly relative to previous
versions of MPNE1D.

27. NPRO: number of times when a concentration profile is to be computed
28. xmin,xmax,dx: minimum x-coordinate where solution is computed [L]
maximum X-coordinate where solution is computed [L]

x-coordinate increment [L]

29. T(i): time since injection began [T]
- NPRO values are specified, free-format

30. NBTC: number of times when a breakthrough curve is to be computed
31. tmin,tmax,dt: minimum time when solution is computed [T]
maximum time when solution is computed [T]

time increment [T]

32. X(i): distance along column [L]
- NBTC values are specified, free-format

20



6.3.Specification of the inflow reservoir concentration history

The analytical solution is capable of simulating a general time-varying concentration in the
influent reservoir. The inflow concentration history is represented as a discrete set of points,
illustrated schematically in Figure 3. The computer program automatically converts the punctual

history into a set of discrete steps, also shown in Figure 3.
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Figure 3. Representation of the inflow concentration history



To represent a concentration history that is already a set of steps it is necessary to "override" the
program. The user must specify an artificial set of concentration history points that yield the
desired history. The rules for specifying the artificial points are derived from the histogram
generation rules shown in Figure 3.

® tp=00
@ CO) = ACG)
! :

The calculation of the required set of points for an arbitrary set of steps is indicated in Figure 4a.
Special cases are illustrated in Figure 4b.
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SPECIAL CASES

1. CONSTANT CONCENTEATION
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Figure 4b. Representation of a discrete inflow concentration history: Special cases
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6.4. Example analysis

The use of the MPNELD solution is demonstrated by reproducing the Brusseau et al. [1992]
simulation of van Genuchten [1974] Experiment 3-5. The column experiment investigated the
transport of the herbicide 2,4,5-D in the aggregated soil Glendale loam. Tritium was used as the
conservative tracer. The sources of the input parameters for this simulation are reviewed in the
following discussion.

(1) Basic data

The basic data for the simulation are taken from van Genuchten [1974]. These data correspond to
the preliminary measurements required for any simulation.

Parameter Value
1 bulk density: py 1.222 glem?®
2 total water content: 0 0.456
3 Darcy flux: q 3.975 cm/d
4 pulse period: t, 9.653 d
5 column length: L 30.000 cm

(2) Dispersion coefficient, physical nonequilibrium parameters

The advective-dispersive transport parameters were estimated by fitting the breakthrough data
from the tritium tracer. For short duration column experiments tritium may be assumed to be
nonreactive. According to the conceptual model of multiprocess nonequilibrium, physical
nonequilibrium affects both sorbing and nonsorbing solutes. Therefore, the tritium data can also
be analysed to identify the characteristics of the mobile-immobile mass transfer processes, using
atwo-region model. The mass transfer coefficient obtained by fitting the tritium data is adjusted
for 2,4,5-D to account for the different free-solution diffusion coefficients of the two solutes.

Parameter Value
6 dispersion coefficient: D 5.313 cm?/d
7 proportion of mobile pore water, ¢ 0.88
8 mass transfer coefficient: o 0.03/d

25



(3) Sorption parameters

van Genuchten reported the results of batch sorption tests with 2,4,5-D. For this simulation, the
mild nonlinearity of the observed sorption isotherm was accounted for by using a linearized
sorption coefficient. Ut is assumed that the sorption coefficient is the same for the mobile and
immobile regions, Kp, = Kin.

A correlation with the batch sorption coefficient presented by Brusseau et al. [1992] is used to
estimate the rate constant for nonequilibrium sorption. It is assumed that the mobile and
immobile rate constants are the same, Kmnz = Kima.

The fractions of instantaneous sorption sites in the mobile and immobile regions are assigned the
same assumed value, F, = Fi, = 0.5.

Finally, the proportion of sorption sites that are accessible to the solute in the mobile region is
assumed to be equal to the proportion of the pore water that is mobile, i.e., f=¢=0.88.

Parameter Value
9 sorption coefficient: Ky, 0.426 cm°/g
10 sorption coefficient: Ky 0.426 cm°/g
11 sorption rate constant: Kp 0.66 d*
12 sorption rate constant: Ky, 0.66 d*
13 fraction of equilibrium sorption sites: Fr, 0.500
14 fraction of equilibrium sorption sites: Fin 0.500
15 fraction of mobile sorption sites: f 0.88

26



(4) Decay coefficients

Brusseau et al. [1992] estimated the decay coefficient for the dissolved phase in the mobile
region. For the simulation it is assumed that decay only occurs in the dissolved phase in the

mobile region.
Parameter Value

16 decay coefficient: An, 0.058 /d

17 decay coefficient: Asmi -

18 decay coefficient: Asm, -

19 decay coefficient: Ain -

20 decay coefficient: Asim: -

21 decay coefficient: Agimz -
Results

The results of the analysis are plotted in Figure 5. The results shown indicate a good match

to van Genuchten’s experimental observations.

Listings of the contents of all files for this example are included in Appendix A3. The input file

for the analysis is expt35.1np.

The echo of the input parameters, calculation of

dimensionless parameters, and annotated results are included in the output file expt35.out.
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C.J.NEVILLE
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Analytical solution for one-dimensional transport
whh mukhiprocess nonec,mlvbrium , v.4

1. GOVERNING EQUATIONS

[{. MAss BALANCE IN MaBitE REGIAN

a(e,,,c,hz + Gn AmCp + 'F(o_?ﬁn_l, + f0 A5t S

+ -f'(, Om2 + Ff)‘S'szmz + &« (Cp - Com)

o¢
= =2 (--QMD__QC,“ T+ 9 Cm) E—
ox oX :

1.2. MASS BALANCE IN [MMIBNLE REGIGN

gfglm C-/'nz + glm‘)‘lmcim + (/- f)(o___as.:m/ * (/—f)(o )S'mfs'nd
¢ ot

+ U“*)ff&’: + (I"“(")sz Simz — d(cm— C'M) =0 __<
ot '

1.3. INSTANTANECUS SoRPNION CansTiTunve RELATIONS




L
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[-4. RATE-LIMITED SaRPNAIN EQUATIONS

ISmz + As, 25, = ke [(/-Fm) Ky T = Sz ] L —
ot

aj-;mz + )sz .S:mz = /(,mz [:(/—F;M>Klm Clm - S.IMZJ )
Tt

— J-Ub.!"/'l‘ﬁn(rnj for S, and S,

mi{

equahon fo- fhe mobt/e regiom (1) :

nz /0 The mass balance

Q(QMC,,,) + O A Coy ff_a%(Fme Cn) *+Fp Nsms Fon Ko S
ot

* {(o (AM[(/—F,,,)KMC,,,— sz]) + < (Cn= Cp)

ax

/nvo/vmj +he a.r;umf?‘ﬁcn of constant ma{er/a/_
fraper'ﬁcs s becomes :

IndCn + G A G + fp FnKim 3CH + fexjm,,r K, Cr,
ot . 2t

+ fekmz[(/-ﬂ,)/(,,cm—sm] + o (Cp=Cim)

= GpD G - 913G
ox? X
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Co//ec-bnj terms y/e/Js :

Op + Fo FKim ) 9Cm + (60 A + Fo X .,
( ¢ 3¢ ( @ ont finKim )

+ Fokp [(/—F,,,)kmc,,,— s,,,z] + o« (Cn= Cim)

— 2 — =
= Q,n Do Cm 7 DC,\ (f
ox? X

- SUbs-t‘v'fvﬁn_g For Sy and S,, m the mars palance
¢7Ua-hm for +the immobile reg/en (2) :

9(9’"’(’"’) + Q/m >‘/m C/m + (/—'F)(c J (F /< C )
i ot

* (/"’c)f’ >‘_>‘,,,-.1 F:m Kim C/m

+ (/_'F)P(’/(/mz [(/—Em>k;m C.Im - sz])

- o((C,n-C,m) = O
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/nvo/</nj +he a:.rumlp'/w-n of caonstant material
fra?er'he_r +his becomes

6”" a_c’ﬂ. + a/m >‘/m C/m + (/"'F)e ka/m E)C,m
It ot
+ </_-F) (’ >‘J'lml F;m Klm C;m
+ (- Flo kumz [(/-F;,,,)K,,,, c. -5, . ]
- & (Cm‘ CI[‘I\) = O

CO//QC‘IL'ﬁj '7z€rm: y:e/ds :

<Q,m + (1-£)p Fim K,m) OCim + (G,m),,,, # (=F) e Ng,, Fm Kh\) c,
ot "

+ (/"F.)(’/’(/mz lt(/'F/-m>k/m Clm - 5-I/r\z} = d(cm.-.c./m)

——(G'

Ec;um‘:an: (5')) (c), (4a) and (45) Comprise ‘he set
of e7ua+lcm.r geverning 10 advecthve- d;.rf»cr_rlve

’f?‘ans/wr'/' ‘weth mu/-t‘:/orace.r.r nme7u1//br/um-
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N
() 2os/aue/is

2. BOUNDARY COND maxsS

The inrfal concentrahons are apecrfied as .,
Cm(%,0) = Cp°

Cm (%,0) = Cm°

Smz (@) = Sm2°

S/mz (0) i Slmza

The émmdqry condrdons are tfec-rﬁec/ asr :

(7) INFLOW BauNpAKRY
7 Em (0,¢) = EpndD Pm (gt) - 7Co(zf)
ox

where : C;(i) s a general 7'Jme—\/ar-fm9 C"oncen‘fru‘/lm
/z/s-fo'ry n /ﬁe /nF/aemL reservair

* For § =0, (7e) redvces+ =« Type L inflew

bavno’ary condifion :
Cn (0,t) = S (¢)
¢ For & = 7, (7e) redvces + « Tyfc_ZZ[ intlow
Aarvndarf cendrian | for a well-pxed reservair :

7cm (0t) = 8,D ac;(qé) = ?c,(é)'
X

—> 771e:eA Two cases presume ﬁ:a.f g %00
When 7;=0.0 we replace (7e) by

§=0: Cu(0¢t) = ¢, (£)

d=1 : acm‘a,é = 0.0
ox

—(74,

(7)
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(i) QUTFLaw .BIUNDARY :
a) SEMI-INEINITE
Cp (20,2) = Gl Exe §-),,t} —(7¢)
b)Y FAINmE . TIPEX . ... . e
. L _.9Cm ‘/L,t\r = (0 e ______4._—_:{2}),.
2
e e e - — [
b2.) AINTE,TLET. . . R e
CCn L) = S =—7h)
___{‘_
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3. ANALYNCAL SolunoN IN 7THE LAPMACE OOMAIN

/. Aff/Ylny ‘he lap/qce Fransdoarm Fo fhe advvechon-
d/errJ/m e7od'f7m :

(9,,, +'F(Fm’(m)[f5m -Cm (X,O)]
+.(.gm>‘4_n ""%’).Wm Fm'(m + fel‘mz (/'FM)KM) Eﬂ‘
= ﬁﬂkmz §mz + “(C-:n "C—-lm)

dx* dx

SUbs-thj in the inrhal condrhens and
collecting Jerms :

I - T ISy - f(Gm""’eFme)
d)(t GnD Jx QmD

+ Gndm * feduns FnKm * Fekm (I-Fn)Km + o -J Sm

= - | [(G,,,-**FeFMKm)CmO + fekn: gm + “C-}m ]
D

—_(8




P ot

\.
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—>  The [a'olgce- Franstormed ‘au-ndary condrhans are .

gCm (0,p) = GnéD dn(9,p) = ¢Co(p)
Ix

/ 3
Cm(=.p) = Co’ SBW-INFINITE
R
4n(lp) = O [ Anee ] — 3.
ax

2. Applymg Hhe Zaf/ace Fransform + the mobile-

/mmebi/e mass Franrfer reachen ;
( G + (1) Fim k,,,,) [f S\ = Sum (x,O)]
+ (6,,,, N * (/-FJ(;/\&NFTM Ko + (1=F)p kymz (1-Fn Y Kim, ) Cim
- (/—F)@k,mz Smz = & (Cm- Cm)
Sobsttrbrg in te brhal condrhens and collechng Ferms :

o (Em‘am) = [ID (Glm"" ("’f)fﬁmKim> + glm)‘lm
+ (/’f')f%/";mklm + a”qfkmz (I-F‘-"‘)K"‘ ] E/m

- (/‘f'Jf kioz Sima — (Glm + ("F)ann I(IM) C/mo
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Re-arran gng

[:f’ (eun * (/’f)fF;n Klm ) + Qms Xfm + (("F)(")Mm F}-m "(Im

# () o kume (-Fomdlom  + :l .

- O(Em - (/' F)eé,,,z §,mz -+~ (e,m‘f (/"fje Forn Kh‘ﬂ) c/mo
—19)

3. AFF/ymg Fhe Laplace Tfransform > the e7ud'hcns +for
+he rate- himite m]:"hcm SHes .

() :
[f §mz - sz (0>] ""'Asz S-mz - ‘émz [(I—Fl;\vkm &:n - §mz ]
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Subrﬁ‘hn‘vnj  the mrhal condrhons and :olwnj-
Gr Sme yrelds : '

Spe = kmz (I-FaYKkm o + Spm2° —{)
Pt Amz * Kmz

(i)

[F Elmz = <mmez (O)] "'Ao‘fmz ‘;/mz - A‘,mz l:(/‘F/m>/€:m E;m "';//nz ]

Sub:#ﬁrﬁnj in the wnrhal condrbons and _rolwrﬂ
'ET E/mz YIC/JJ s

- - (o]
Bz = kume (1-Fm) Kim T + Sime —
P *)‘SMZ * Kymz
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4_— SUb:ﬁMns For amz N the Solovhon tor —C—m (IC.(IZ)—’(‘O))
yuelds :

[F (G,m + (I- F)e Fim K,,,,) + Sim Ay + <["F)<’>‘5/m: F.lm Kim

—

-+ (!""{)e kimz (l‘ch)Ktm + & :l C

"m

= En\ + (("F)e k‘mz (km\z <I_FIM)KIM EI"l\ + S;mzo)

Pt >‘s:mz + Kimz

+ <G,m + (f—f)taF-‘,mk,m> Cim”

Ca//ecyLm_g terms in E,m

{F (elm + (l‘.:)e F',m K,m> + le\lm + (l"fzjef\.nm( F;m Klm

+ 0= (1-Fm) Kim kime - p*hsume + oo ] ¢

F* k)m% +k31mz

- XC, * ('"F)(’ kimz Slrnzo + (Qm"' (‘“F)fﬁmkm) Cin°
P+ klm7.+ >‘Stm2
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Solving for Eym >

oc . C

m [a)]

[F (g:m + (l'{:)f F,m K|m> + leklm“’ ('_F)ekjlml Fl-m Kim

Ol
N

+ <I“'F)€ (,-:.M“> Kim !<m~n. : F+ /\3'm1 + ]

P"' k,mz+ /\\Simz
-+ 610 ——'“3

w"\ere :

Glo = (l"{J?krmz S/mzo -+ (Q/m'f‘ (""-)f Fie K:m>ctmo

F + '(m\z +A,‘>‘Imz

[F (Glm + (f" F)f)(:tm K«m) + G A + <l—€)~f’>\5/mr F'—lr'n Kin

-+ (!—-F)f ({-F:““B qu km\z . F‘f.A.ilmZ + o j]
F"' )(tmz."'>‘3rm2

—(14)




O
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5, Subshfu-hnj f=r _C,m and gmz n the Hansfermed
O.dVCC‘fﬁcm— cf\:fe."_\'rcrn €7ua’hm\ (\e. (13), (”) - (8))

7':42]:15 :
°Cr —~ 7 dam | [(’ (6m + FoFnKm)
dx* 6.,.D dx (SN

+ meﬂ\ + {e%ﬂﬂ Fme + 'Fe kmz (‘_':m)Km + X :] Em

=-__[_{(6,,,+-F€>Fm)<m‘)cm°
S.D

+ ‘Fe kmz ( k. (1-Fm) Km Cm + Sz’ )
P'\' km-,_‘\">\sm2

+ ot ( x . Cp
[r (Glm + (l°‘F )e FIM K\r\) * Gw\)m\ + ("?)ek&m; F\m K\m

+ (\"‘f‘)e (\—F‘MBKW\ kamz . P+ 15\:1\2 + ]

Pt kKimz +Asimz
+ G,°> }
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DEFINE :

Gao = (6,,., + 'FeFme)Cmo + 'Fe I"m,g szo ______.*‘
F"‘ knz"')SmZ

THEREFORE , COLLE CTING TERAMS , THE GOVERNING ERUATM.ON BECOMES :

JZE’“ - ? ‘{Em - { {P (Qm + Fekam>
JXZ en\D dIx GMD

+ Qadm + 'F(’ Asot FnKm + fo ((-Fn) Km kmz(P* )ImZ) + oL
P"'“mz"‘)s:nz

ol } ol
m
[P( + (- F)fﬁnkom) + S A + (“'F)(’xs.m FunK
-+ (l-;)e (l om)Km\klmz (F*}sz) -+ O( ]
Pt kimz+ Asinz
= - ‘ [Gzo"'deto.] ——-—(I“
SnD .

THE GOVERNING EBUATIOW WILL BE RE-wWRITTEN IN MoRE CoMPACT
FORM USING NOTATON INSPIRED BY STAUFFER AND HATFIEWD (I932).

DERINING TmME FGULIWING TERMS :

ry = (]-i-_ﬁF km){p —(r

Pz = _GL. ('F(’ (1-Fm) Kin - _knz (p* Nsma) ) E—Y

m P"‘ koe* Asma °
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3 —_L(O(Y—'OLZ) — (19
O Y
Fa = Xm+ Fp gy Fo Kn —(2a
Om
with

Y = P(glm + f’()_f)ﬁmKlm) + elmklm + (}'F)G\S,,ﬁ an K\m

+ e (!-‘F) ()‘Flm) Kim kum. (P"'\sz) + o —_-(20'

P k wnz ¥ }‘Sun‘?.

SUBSTTUNING INTO THE GJIVERNING EFRUATON YIEWDS .

Clzam— 7 JEM_ lljr‘l+r;+f—‘3+a]z:m
dx? 8.0 dx D

= - | Ile°+ o(Gi,°]
9,.D
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DEFINING B* = Gn, [I", + 12+ +r‘4]

The 30Vernmg ec’Uarho-n becomes :

d*Cpn — a dCm - BT
dx* 6.0 dx GmD

—(2
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6. The dronsformed advec%cm-eh.rrcr.non e7u=d:an
for -the mobile region Is a hnear , nan—hcmosenecus-,
cn-dmary Ji Hferemhal equq‘hcn . L
The genera/ solrhon for Cpn <an e exFrE:Jed as+4he
sum of a Comf/emcn“l'al'y ane a parhevlar soluhon
where

Solvhon of the Ccrrr‘errandan_g
Aomo genecove (Cmrkmen'fary or
avxthary) differermhal e7u¢‘hon

parheolar solvhon i the non-homogeneous
Problem

(i) /‘/av-nojeneaw sofubor

7he bhomogenseus differemial equchon fbas He
1%//crw7nj 5encra/ soluhen

Sy = £, EXPIH X ] + Ep expfH x ] —(23,

w/;er; : H, « 7 — \/‘Zz+ 456,D —{(24q)
26n0D

Hy= 9+ /7z+ 4.8’9,,,13'_

—(246)
26,0
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(l/) farfecvlar solvtron

The far—ﬁcu/ar solvhen 15 derived Using the method of
afcra‘t‘ors :

Sp = EX”[-/’IX}mef}[W[-fsz
fsw{f,x; f(y) 4 X ] JdE —(25)

Aere : pr o= Hy
Pz = Hz

f(X)= - | °‘GI°+6201
émD

I
N

Therefore , ;uén‘r—ﬁrﬁng Nt the expressien for the
f,a,-f,cu/ar' Solvhaen we obtam :

- oMy x) [ o (a3} [exr [-4,5]

jsew;y,x] K dx ] d%

= K EXP[-H,:}fﬂr}ﬁ,i}[sxrf-HZS}

- | A H, 8114 .
7zt ..7]5

- £ Exrf-H,x} [ exF [ H, 5] d5

- K

Hy Hz
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/Vaw, Suésﬁ-ﬁrﬁng +r /{/ and /-/z and sz:

E/’ = — 6,D ['_£_<°(510+G2°>]

a8* 8,0
= (x G, °+ Gzo)
5*

AJ:emblmg the COmFIcmen'{'at‘y and the
parbcular soluhans |, the seneral Soluvhen
beccrmes H '

+ (xG°+G,°)
B-l

The coefhcients £, and E; are now
evalvated by ccmrrderrng the bcvndcu-y

condrhens.

—(27)
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7. TRANSFOEMED BOUNDAEY Coxd MaNS

Rc—cal/nj +he ‘ﬁ‘dmfarrncJ inflew and ouvtflag
bovndary condrhons frem (Ja) and (Fb0) »

(i) metow (from 7e)

9Gn (9,P) = 98D 4m (9,p) = qC,(p)
dx

(i) ouTFLOW -

a. Semi-ineINrE (From TF)

-C—m (‘l’?,P) = / Cmo

Pt 2n

b, FNTE, TIPEL (from Tg)

dem (L,p) = O
dx

c. FINITE, T7PE 1 (From 7h)

Em (L;F) = i
P




2/ 38

c

8.1. soLUnaN FOR THE SEMI- INFINIE CASE

- Con:/derm_é He ovtflow bm.ma'ary frst

5,,(40,/») « Cn° E,éxr}’H,x}’-szsxr}'HZx}J
}:f)\m X —> 00
# (o(G,"-f-Gz"’)
5-&

/n order for the Solorhon +» be bounded we
Mmust Aave :

EZ-O

Therefsre | fe genera! soloten reduces 4o

S, - E,exrf{H,x}] + (G °+ G2°)
5*

— /n order 4+ evalvate He mFlrro Ama’«ry

candihorn we reguire e Jderivabve of Hhe
5enera/ Solvrfhon -

c/C-:m - E/Hl 5(7{”,)(}
Ix
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Svbsttorbng For Cm and dc—:‘h/cJK m the inflow
5MJ«/‘Y cordien we cbhtam - ’

Y[E/EXF}H,X} + («G,;: ) ]
X =0

- €,5D [E,H, EXF{H,X}]

x=0

- 7C,(p)

SImIplrfy/ng :

g [E, - (xG,‘;t Ge°) ] — 6,6DE, H,
Co//ec%nj Ferms  /n E/ .

E,[Y-GMJDH,] - G,

-— ? (KG/ 0+ Gza)
B
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CIN
200¢/AuG/18

So/ij &7‘ E/ 2

Fy'na//y, rubrfr{\rﬁnj e the 3enem/ saolrhen )/leld.s‘:

E‘m - (__7___[50(10) - (aG,°+Gz°):}> EXF{/—(,X}

q- OmSDH, B*

. ~(O(G’°+ GZO)
D*

This solvhon presumes CI.#0.0.
Fm'cl =0.0) the saluvhon accomodates +Hhe case of §=/ and
the infiow 6Nndar7 cendrhon collapsesr o a Type I condrhon ;

9Ch (0t) = 00
X

For the case of 8=0, a 7\/PeI bdmdary condrhon, the
transformed nflew Ba-undqry condrhon s rcrléced by :

Em (O'r) = -éo <F>
Evaluating the general soluhon aF x=0 :

Cn(0,p) = EjexpfH,x} + (“Gf"G‘QJ = G (p
B* x=0

Salv}ng For E1 :

Ey = C,(p) - (#6,°+Gs")
B*
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S B Flnallv suh.:tﬂyhag_ﬁr E/_Ja ‘ﬂxg,gm:tnlm o _
R _Cp= [C (f»)_--(Lf'f'@z) ExPIHxl _ ,
3 ) N - A R R
I I +(a<_G, °+.G, ) T [

o B

e L 50/0‘1101\ fc'r a ,Senzl-urﬁmk L

 doman and 9200
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8.2. solunaN FOR THE FINITE CASE, TYPE II B.C.

DIFFéren‘haﬁng the senera/ solvhen w.rt X :

dem = E H; ExP{H x] + EzH, ExP JHyx]
dx

— The transformed nflew ba\mc/ary condrhen  becomes:
7-G(p)
-7[ E|exr[Hx} + Egoxr{Hpx]

-+ (O(G|°+Gzo) }
B* x=0

- 8,8D [E,H, ExP JH,x]} + EszEXP{Hzx}]
. X =0

EVafua’hns the bmmdary cendrhon y:elds :

?EO(F) =9 [E, +E, + (uG,°+G‘,_°):|
. B
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Collechng ferms m E | and Ep :

(q- 8néDH,)E| + (9= BmiDHz ) E,

= 9C(p) — g (%6,°+az°)
5*

— The transformed outflew baundary condrhon 1s :

dn

= [EIH,EXP{HIx} + E?_Hzm{Hzx}] - 0
dx

Xx=l

L

Evalua'hnj this expression at x=[_ yrelc!s :

E/H exp§HLY + BoH, EXP{HLT = O

— The coefficients E, and E, are evaluated
using Cramerl!s rule.
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Wr‘rhns the eﬁucrhcm: for El and €2 m matix farm:

- - e

7-6‘,,SDHI 7-67.50"‘2 El

e - hoe

‘Z(C—Q,(/’) - (x& "7 Gzo))
B'ﬂ

0

-

Defvﬁns +he 'Fa//cunng determinants :

b

Z‘ QMSDLI, 7‘ éngHZ

H,exp {H,LY Haexp {H L]
= Hz(q-SmSDH,)Exr §H L} —H, (q- 6mdDH,) EXF{ H/L}

D= | 7(Clp- -——("‘G'Z,G;) ) 776m3DH;

'e) Hy EXP{H, L} |
l

= ?(E—D(F)‘ (°<61°+Gz°)) Hy EXP[HZL}
5*
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D ‘Z'GNSDH( 9 (C (p)— (xG,° +Gz ))

H exr{H LY ©
- -q(éz(p>~ LG_G__)) Hy exe [, L
B” '

L)sms +hese dckm:nam{s, +the coefficients are given b)/ :

E‘ - Dz
O
Ez bad D3
B

'T?\erefcre, ‘H’\e 'ﬁh‘t! Sal\ff\cm becawe: :

Cm= D exp{H x] + Ds ExP{H.x}
O, B

+ («G,"-f-c?")
B'.\‘
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ca y/ I% JnALﬁm_/zmmmﬁaﬁ_?_éQ Q
2a0t/wdafls : /3 g 200 Then fhe solutran wedl foil

for {ﬂc mﬂé_iﬁlﬁilmmwd#mﬂm)

For this case the francformed inflov: baundary s

condrbhon s :

Cm(0,p) = C, (p)
S Eydv_g.ﬁng_lﬁc_gsngr_al_:dscbm, af x =0 ;

o Cm(Op) = £y EXP [H, X ] +Fq £XP fHyx]

-+ _(0(6:,"-!'620) == C,(P\
Bﬂ

77)1: l‘:du:g.r-/o F4

B#
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The matrix fam of the solfion Fr £ and E5 hecamer:

i { E,

HexpfH,L}  H,exp{HL} E,

Z;(‘P) _ {d6,°+62°)

B*

(@)

n:_m;d:m_b_aziﬁ:.m:_f:o:mbﬁzm_a:_miem&d

for a;(_Q._O_,__me_ﬂs_‘&_/&um}_dgﬁgmm‘h:
L

7)'. LH@QE.LH;L}—" I-LI.EXP[H:L}

- Dz#—lr—ﬁoff) = :(ﬁ_G—.l;:_*—C’kgr} Heoxpftel}

| memJap- “@’;é;,gy, e ;&,L;_.,-__,_.ﬂ_f o
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o

8.3 . soLynaN FOR THE FINITE CASE,TrPE 1 B.C.

DlFFér‘emHa’hng the senera\f solrhen w.rt X :

dSp = EjH ExrH; x] + E;Hp ExP [Hyx ]
dx

— TThe transformed mflew Lcu'rv:/a.ry condrhons become -
7-G(P)

-+ (OLG|°+GZO) :I
B* X w0

- emSD{iE‘,H, sxP{H,x]} + EszEfoHtx}]
x=0

EVa!uahnS the bmmdary cendrhon yxe/ds '

?E;(/p) = 7[5, +E, + (a(G‘,osz")]
. B*
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—

The transformed autfloo condibon 4s i R

Co//ec—bnj Ferms . £, and £,
(9~ 6n8DH YE( + (9-6,, §DH, )E2

= 7-6;)(/’) - g (0(6,0-/- Gzo)
B*

5*

Evalvathng +his Srpress(m at x=/ y/e,/cf,J :

Efexp fH L} + Ep exP § oL} + (%G°+G2%) = <@

—_—

B> r

The coecfhcrents E/ and £, are evalvated Usin 7 Cramer'vs

Cp (L, t) = [E,B(F{//,x P+ E, ExPfH,x} + (dG}D‘f‘Gzo)] .
X

/:a/c.
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Wrrhn_g +the e7ua’f\an.r for £; and E, In madtoix foran -

-
9~ 6,30H, 7~ 6, §DH, £
EXP JHL § Exp {H L f Ez
7 (C (,D)- (“G * 6 ))
= ) -
K ,(3‘_,@_ + Gz ) _
- P B*

.D¢-ﬁmf\_7 The 1@//01»2/37 determnants -

9-6n8DH;  9-0,5DH
D, - 7 i}
£xp§HL T ExP{H,L T
q(co()~ (xe +G,°) ; — &, §DH
Lo (xG° *62) : Exp fHy L}
F B* :

- 7(c (o)~ (.,(@ 6" )m»[/u} o

- (;L—(”(ql # Gp° ))(7 a, SDH)
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q - 6.5DH,

B HiLF

o(am-cene))
..o . B*

. (=6°+ Gz°)

B‘l‘

L ,é/.fmj fl’)e.fe,.vc/,c‘/glz“mm.mﬁrm , 7%6 <e CF,‘EQI,:nf:r. "El 404:1 Ez [

are. ,j/,vlcn }—7 e

77?er*<‘fccTc/ 7he Pral sslsbon becemes :

% Dy

o (aG 2t gt

Cp= Ds xpfl,x} + Desxeft,x}

S ; o
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CIN

2004/

AUG/18

ng_s_l‘dum_Fm;_ﬁd- o#0.0

a.LLLL_L(stJ_meaﬂ_lﬂnd-c;_mdcﬁ.m\
For fhis case the francformed mflow bovndary
cang/aﬂ_znﬁl: H

Cnl0.p) = C, (o)

I

ﬂl

EVg/yg‘b_n#jk_gsag:cJ_:gﬁzﬁm at x=Q

Cn{0,p) = £, exP fH,x} + £, 6xP [ Hy x]

* (£G,°+G,°)

== c.‘. (f)’

B!

x=0

This redvces b

56+ (46°+6G,Y) = C.(p)
B ¥
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The _matrix form of the solvha for £, and £z becames:

,_ | . b £

N e $,M~,.._T.. I
B EXPI!‘IIL} EXP {H;LL} EZ _____
| T - (Gt Gs) e
B* Y

T G~ (XG,°+Gz°) N T

SRS NUSIU U R— ~—P~»—-—«-~~—~~*B—*-——w———-—-—4'--ﬁ~~-—»-~—v--_-_--—_,
_ ——_ The_saolvhen_har the same 3@:&1_'5@34*« wasderved

— for 9400, wik the folloung determmnant.
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- 9. INFlow €aNCENTRATION HIMY,.'CoU—')

Consider a jener‘ﬂ, ﬁme-Varymj n flsw  concentfrachon
represemfed as a set of s-feps :

3 ——— CONTINUOVS HISTORY

]
C.(8)

s=--+ PISCRETE APPRQXIMATION

Cla)
C() 4

C(z)q :.. A
Cinge

F v —Sy»t
2(0) 4(3) <(4) <o ¢(wp)
Co(‘é) = AC/ + ACZ H(é"tz) * AC3 H(é-f!) o+ s -
NP
= Z AC H(%-¢;) —(30)

g
where HE-1;) s the Heav:;:Je step ﬁmc-ﬁdn, defined as

- = O F t<T
HE-T) = [ 0 e

— The starfing fimes for cach change. in the influent reservair concendraton are :

t, =t()=0 ; AC - C(1)

£, = E@)+¢() ; aC, = C(2)- C(1)
2

t; = i(3!+ ?-"(22 ; AC, = C(B)—C(?)
2

t o toeet(N-t) ; AC,, = C(NP)-C(NP-1)
L >
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- Apf/y/nj the Za'place Hransfearm fo the inflow
concentration history

— NP
Clp) = = aC x_L sxr {-pt;} —(31)
¢=/ P
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Appendix A2: Source code listing
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PROGRAM MPNE1D

*khkk

EaE = =

k=

E o = =

Bk =

*khkk

*hki*k

MPNEZLD iaiade
e — E = =

ANALYTICAL SOLUTION FOR Ak
MULTI-PROCESS NON-EQUILIBRIUM SORPTION e

Bk =

FEEAEEAEITEIAAEITEAAEITEAAEAEAAXAEAXAAEAXAXAAXAAEAAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAAXAXAXAXAXdhAdhi*dk

DESCRIPTION

ANALYTICAL SOLUTION FOR 1-D ADVECTIVE-DISPERSIVE TRANSPORT
WITH MULTI-PROCESS NON-EQUILIBRIUM SORPTION.
(1) DIMENSIONAL SOLUTION

(2) FIRST-ORDER DECAY REACTIONS

INITIAL CONCENTRATIONS

INFLOW BOUNDARY CONDITION WITH
INFLOW CONCENTRATION

(3) NON-ZERO
(4) TYPE I or TYPE II11
TIME-VARY ING

(5) SEMI-INFINITE OR FINITE COLUMN, WITH TYPE 1 OR TYPE 11
OUTFLOW BOUNDARY CONDITION

REF: BRUSSEAU, M.L.,
MODELING SOLUTE TRANSPORT

R.E. JESSUP, AND P.S.C. RAO,

INFLUENCED BY MULTIPROCESS

NONEQUILIBRIUM AND TRANSFORMATION REACTIONS.
WATER RESOURCES RESEARCH, 28(1), 175-182, 1992.

DEVELOPMENT HISTORY

VERSION
VERSION
UPDATED

VERSION
VERSI0ON

VERSI0ON
VERSION

DEFINITION OF

with modifications for Fortran90 by J.P. KEIZER

1 : C.J. NEVILLE 1992703
2 : CIN 1992709
: CIN 1992709729
CJIN 1993/03/16
CJIN 1993/06/10
CJIN 1998/11/19
3 : CIN 2000/08
3.1 : CJIN 2002/01,
3.2 : CJIN 2003/01
4.1 : CJIN 2004/08/24

INPUT PARAMETERS

Rhob
THETA
Q

D

PHI

F
ALfa
FM

FIM
KM

KIM
km2

BULK DENSITY (M/L**3)
TOTAL WATER CONTENT (L**3/L**3)

DARCY FLUX

L/m

HYDRODYNAMIC DISPERSION COEFFICIENT (L**/T)

PROPORTION OF PORE WATER THAT IS MOBILE

MASS FRACTION OF SORBENT COMPRISING MOBILE REGION (-)
FIRST-ORDER MASS TRANSFER COEFFICIENT (1/T)

IN MOBILE REGION FOR WHICH SORPTION

FRACTION O

F SORBENT

IS INSTANTANEOUS

FRACTION O
INSTANTANE

F SORBENT
0ouS

IN

IMMOBILE REGION FOR WHICH SORPTION

EQUILIBRIUM SORPTION CONSTANT IN MOBILE REGION (L**3/M)
EQUILIBRIUM SORPTION CONSTANT IN IMMOBILE REGION (L**3/M)
FIRST-ORDER SORPTION KINETIC COEFF. FOR MOBILE REGION (1/T)

1S



OO0 0O00O00O0000000O0O0O00O00O00O0O000O0OO0

kim2
LM
LM1

LM2

LIM
LIM1

LIM2

1BC

NP
T1,CI
0BC

LENGTH
CL

CMO
CIMO
SM20

SIM20

XX
XMIN
XMAX
DX

T
TMIN
TMAX
DT

FIRST-ORDER SORPTION KINETIC COEFF. FOR IMMOBILE REGION (1/T)

FIRST-ORDER DECAY CONSTANT FOR MOBILE REGION (1/T)

FIRST-ORDER DECAY CONSTANT FOR INSTANTANEOUS SORPTION

SITES IN MOBILE REGION (1/T7)

: FIRST-ORDER DECAY CONSTANT FOR RATE-LIMITED SORPTION

SITES IN MOBILE REGION (1/T)

FIRST-ORDER DECAY CONSTANT FOR IMMOBILE REGION (1/T7)

FIRST-ORDER DECAY CONSTANT FOR INSTANTANEOUS SORPTION

SITES IN IMMOBILE REGION (1/T)

: FIRST-ORDER DECAY CONSTANT FOR RATE-LIMITED SORPTION
SITES IN IMMOBILE REGION (1/T)

= INFLOW BOUNDARY CONDITION

=1 : TYPE I (DIRICHLET)

= 3 - TYPE 111 (CAUCHY)

NUMBER OF POINTS DESCRIBING INFLOW CONCENTRATION HISTORY

INFLOW CONCENTRATION HISTORY POINT

OUTFLOW BOUNDARY CONDITION

1 - SEMI-INFINITE DOMAIN

2 - FINITE DOMAIN, TYPE 11

3 - FINITE DOMAIN, TYPE I

LENGTH OF THE DOMAIN (USED ONLY FOR FINITE DOMAIN)

CONCENTRATION AT OUTFLOW BOUNDARY FOR FINITE DOMAIN-TYPE 1

INITIAL CONCENTRATION IN MOBILE REGION DISSOLVED PHASE

INITIAL CONCENTRATION IN IMMOBILE REGION DISSOLVED PHASE

INITIAL CONCENTRATION IN MOBILE REGION RATE-LIMITED

SORBED PHASE

> INITIAL CONCENTRATION IN THE MOBILE REGION RATE-LIMITED

SORBED PHASE

DISTANCE FROM COLUMN INLET (L)

MINIMUM DISTANCE OF INTEREST (L)

MAXIMUM DISTANCE OF INTEREST (L)

DISTANCE INCREMENT (L)

TIME SINCE START OF TRANSPORT (T)

MINIMUM TIME OF INTEREST (T)

MAXIMUM TIME OF INTEREST (T)

TIME INCREMENT (T)

DECLARATION OF VARIABLES

IMPLICIT NONE

INTEGER
PARAMET
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

DOUBLE
DOUBLE
DOUBLE
DOUBLE
INTEGER
INTEGER
INTEGER
CHARACT

MAXPT ,MAXP , MAXB
ER(MAXPT=50, MAXP=100, MAXB=100)
PRECISION PARAM(19)
PRECISION CMO,CIMO,SM20,SIM20,DELTA, LENGTH
PRECISION CL
PRECISION TI1(MAXPT),CI(MAXPT),TS(MAXPT) ,DELC(MAXPT)
PRECISION RHOB,THETA,Q,D,PHI,F,ALFA,FM,FIM,
KM, KIM,KM2,KIM2,LM,LM1,LM2,LIM, LIML, LIM2

PRECISION R,P,OMEGA,BETA(4),KMO,KIMO,EM1,EM2,EIML,EIM2
PRECISION XMIN,XMAX,DX, XX, XB(MAXB)
PRECISION TMIN,TMAX,DT, TIME, TP(MAXP)
PRECISION CM,CIM

1BC,0BC,NP, 1,J,N,LENFIL

NPRO,NXP,NBTC,NTB

IC
ER*70 JOBID,TITLE
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COMMON /1CS/CMO,CIMO,SM20,SIM20

COMMON /BCS/TIME,DELTA,TS,DELC,NP,0OBC,LENGTH,CL ,XX
COMMON /MPNE/PARAM

COMMON /CSWITCH/IC

OPEN INPUT, OUTPUT AND PLOT FILES

WRITE(*,*) "input JOBID for file definitions: ~
READ (*,100) JOBID
WRITE(*,™)

LENFIL=INDEX(JOBID," ")-1
OPEN(UNIT=55,FILE=JOBID(:LENFIL)//" .inp~,STATUS="0LD")
OPEN(UNIT=66,FILE=JOBID(:LENFIL)//" .out™ ,STATUS="UNKNOWN")
OPEN(UNIT=67,FILE=JOBID(:LENFIL)//" .dat" ,STATUS="UNKNOWN")

READ TITLE OF SIMULATION

READ(55,100) TITLE

READ INPUT PARAMETERS

BASIC PROBLEM DATA
READ(55,*) Rhob
READ(55,*) THETA
READ(55,*) Q
READ(55,*) D

MPNE DATA

READ(55,*) PHI
READ(55,*) F

READ(55,*)
READ(55,*)
READ(55,*)
READ(55,*)
READ(55,*)
READ(55,*)

ALFA
FM
FIM
KM
KIM
KM2

READ(55,*) KIM2

FIRST-ORDER DECAY COEFFICIENTS
READ(55,*) LM

READ(55,*) LM1

READ(55,*) LM2

READ(55,*) LIM

READ(55,*) LIM1

READ(55,*) LIM2

INFLOW BOUNDARY CONDITION DATA
READ(55,*) 1BC

READ(55,*) NP

READ(55,*) (TI(N),CI(N), N=1,NP)
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OUTFLOW BOUNDARY CONDITION DATA

READ(55,*) OBC

READ(55,*) LENGTH ! used only for OBC=2 or 3
READ(55,*) CL I used only for OBC=3

INITIAL CONCENTRATIONS
READ(55,*) CMO
READ(55,*) CIMO
READ(55,*) SM20
READ(55,*) SIM20

OUTPUT SPECIFICATIONS
READ(55,*) NPRO
IF(NPRO.GT.0) THEN
READ(55,*) xmin,xmax,dx
READ(55,*) (TP(l),1=1,NPRO)
END IF

READ(55,*) NBTC
IF(NBTC.GT.0) THEN
READ(55,*) tmin,tmax,dt
READ(55,*) (XB(l),1=1,NBTC)
END IF

ECHO INPUT PARAMETERS

WRITE(66,210)

WRITE(66,211) TITLE

WRITE(66,220) Rhob,THETA,Q,D

WRITE(66,221) PHI,F,ALFA,FM,FIM,KM,KIM,KM2,KIM2
WRITE(66,222) LM,LM1,LM2,LIM,LIML,LIM2
WRITE(66,231) CMO,CIMO,SM20,SIM20

SET INFLOW BOUNDARY CONDITION

IF(IBC.EQ.3) THEN

DELTA = 1.DO I TYPE 111 INFLOW B.C.
ELSE

DELTA = 0.DO I TYPE 1 INFLOW B.C.
END IF

"LOAD"™ MPNE PARAMETER ARRAY

PARAM( 1) = RHOB
PARAM( 2) = THETA
PARAM( 3) = Q
PARAM( 4) = D
PARAM( 5) = PHI
PARAM( 6) = F
PARAM( 7) = ALFA
PARAM( 8) = FM
PARAM( 9) = FIM
PARAM(10) = KM
PARAM(11) = KIM
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1

1

PARAM(12) = KM2
PARAM(13) = KIM2
PARAM(14) = LM
PARAM(15) = LM1
PARAM(16) = LM2
PARAM(17) = LIM
PARAM(18) = LIM1
PARAM(19) = LIM2

CALCULATE DIMENSIONLESS PARAMETERS

R
P

1.DO+(RHOB/THETA)* (F*KM+(1 .DO-F)*KIM)
Q*length/(PHI*THETA*D)

IF(DABS(Q).GT.0.D0O) THEN
OMEGA = alfa*length/Q

ELSE
OMEGA = 1.D6

END IF

BETA(1) = (PHI+(F*Rhob/THETA)*FM*KM)/R

BETA(2) = ((F*Rhob/THETA)*(1.DO-FM)*KM)/R

BETA(3) = (1.DO-PHI+((1.DO-F)*Rhob/THETA)*FIM*KIM)/R

BETA(4) = (((1.DO-F)*Rhob/THETA)*(1.DO-FIM)*KIM)/R

IF(DABS(Q).GT.0.DO) THEN
KMO = (KM2*1ength*THETA/Q)*(R*BETA(2))

KIMO = (KIM2*1ength*THETA/Q)*(R*BETA(4))
EML = (length*THETA/Q)*((PHI*LM)+(F*RHOB*LM1*FM*KM/THETA))
EM2 = (length*THETA/Q)*(F*RHOB*(1.DO-FM)*KM*LM2/THETA)
EIML = (length*THETAZQ)*(((1.DO-PHI)*LIM)
+((1.DO-F)*RHOB*L IM1*F IM*KIM/THETA))
EIM2 = (length*THETA/Q)*((1.DO-F)*RHOB
*(1.DO-FIM)*KIM*L IM2/THETA)
ELSE
KMO = 1.D6
KIMO = 1.D6
EML = 1.D6
EM2 = 1.D6
EIML = 1.D6
EIM2 = 1.D6
END IF

PRINT OUT COMPUTED DIMENSIONLESS PARAMETERS
WRITE(66,240) R,P,OMEGA,KMO,KIMO
WRITE(66,241) (BETA(I),1=1,4)

WRITE(66,242) EM1,EM2,EIML1,EIM2

CALCULATE INFLOW CONCENTRATION HISTORY

ts(D) ti()

delc(1) ci(1)

if(np.gt.1) then
do n=2,np
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ts(n) = (ti(n)+ti(n-1))/2.do0
delc(n) = ci(n)-ci(n-1)
end do
end if

ECHO CONCENTRATION HISTORY
WRITE(66,230) IBC
write(66,1234)
do n=1,np
if (n.1t.np) then
write(66,1235) ts(n),ts(n+1l),ci(n)
else
write(66,1236) ts(n),ci(n)
end if
end do

ECHO OUTFLOW BOUNDARY CONDITION DATA

WRITE(66,2231) OBC,LENGTH
WRITE(66,2232) CL

WRITE OUTPUT HEADING

WRITE(66,500)

CALCULATE CONCENTRATION PROFILES

IF(NPRO.GT.0) THEN
NXP = idint(((XMAX-XMIN)/DX)+0.5d0)
DO 1=1,NPRO

TIME = TP(1)

DISTANCE LOOP
DO J=0,NXP
XX = XMIN+DBLE(J)*DX

IF(TIME.LE.O.DO) THEN
CM CMO
CIM CIMO
ELSE
IC=1
CALL HOOGD(TIME,CM)
IC =2
CALL HOOGD(TIME,CIM)
END IF

WRITE (66,510) TIME,XX,CM,CIM
WRITE (67,510) TIME,XX,CM,CIM
END DO
END DO
END IF

CALCULATE BREAKTHROUGH CURVES
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222
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IF(NBTC.GT.0) THEN
NTB = idint(((TMAX-TMIN)/DT)+0.5d0)
DO 1=1,NBTC

XX = XB(I)

TIME LOOP
DO J=0,NTB
TIME = TMIN+DBLE(J)*DT

IF(TIME.LE.ODO) THEN
CM = CMO
CIM = CIMO
ELSE
IC=1
CALL HOOGD(TIME,CM)
IC =2
CALL HOOGD(TIME,CIM)
END IF

WRITE (66,510) TIME,XX,CM,CIM
WRITE (67,510) TIME,XX,CM,CIM
END DO
END DO
END IF

FORMAT STATEMENTS

FORMAT (A70)
FORMAT(5X, "MPNE ANALYTICAL SOLUTION FOR 1-D TRANSPORT",/,

5X, "VERSION 4.1",/,
SX,':::::::::::"/)
FORMAT(5X,A60,/)
FORMAT(5X, "BASIC INPUT DATA",/,
5X," - "/,
5X,"RHOb : BULK DENSITY " ,1PE12.
5X, "THETA : TOTAL WATER CONTENT " ,1PE12.
5X,"Q - DARCY FLUX " ,1PE12.
5X, "D - HYDRODYNAMIC DISPERSION COEFF. " ,1PE12.
FORMAT (/5X, "MODEL SPECIFIC DATA",/,
5X," - "/,
5X, "PHI - PROPORTION OF MOBILE PORE WATER " ,1PE12.
5X,"F - MASS FRACTION OF SORBENT COMPRISING",/,
5X, " MOBILE REGION " ,1PE12.
5X,"ALFA : FIRST-ORDER MASS TRANSFER COEFF. ",1PE12.
5X, "FM : FRACTION OF SORBENT IN MOBILE REGION®,/,
5X,*" FOR INSTANTANEOUS SORPTION " ,1PE12.
5X, "FIM : FRACTION OF SORBENT IN IMMOBILE REGION®,/,
5X, " FOR INSTANTANEOUS SORPTION " ,1PE12.
5X, "KM - MOBILE EQUIL. SORPTION COEFF. ",1PE12.
5X, "KIM - IMMMOBILE EQUIL. SORPTION COEFF. " ,1PE12.
5X, "km2 - FIRST-ORDER SORPTION KINETIC COEFF.",/,
5X, " FOR MOBILE REGION " ,1PE12.
5X,"kim2 : FIRST-ORDER SORPTION KINETIC COEFF.",/,
5X, " FOR IMMOBILE REGION " ,1PE12.

FORMAT(/5X, "FIRST-ORDER DECAY COEFFICIENTS",/,

6/
6/
6/

6)
6/

6/
6/

6/
6/
6/
6/

6/

6)



1 BX, " mmmmmmmmmm e "/,

1 5X, LM - MOBILE REGION *,1PE12.6/

1 5X, "LM1 - MOBILE REGION INSTANTANEOUS SITES *,1PE12.6/

1 5X, "LM2 - MOBILE REGION RATE-LIMITED SITES *,1PE12.6/

1 5X, "LIM - IMMOBILE REGION *,1PE12.6/

1 5X,"LIM1  : IMMOBILE REGION FOR INSTANTANEOUS *,/,

1 5X, " SORPTION SITES *,1PE12.6/

1 5X,"LIM2  : IMMOBILE REGION FOR RATE-LIMITED ~,/,

1 5X, " SORPTION SITES *,1PE12.6)
231  FORMAT(/5X, " INITIAL CONCENTRATIONS",/,

1 ) G — "/,

1 5X,"CMO  : *,1PE12.6/

1 5X,"CIMO  : *,1PE12.6/

1 5X,"SM20  : *,1PE12.6/

1 5X, "SIM20 : " ,1PE12.6)
240  FORMAT(/5X, "CALCULATED DIMENSIONLESS PARAMETERS",/,

1 BX, ™ —mmmmmmm o m e "/,

1 5X, "R - TOTAL RETARDATION FACTOR *,1PE12.6/

1 5X,"P - PECLET NUMBER *,1PE12.6/

1 5X, "OMEGA : DAMKOHLER # REPRESENTING PNE *,1PE12.6/

1 5X,"KMO  : DAMKOHLER # REPRESENTING MOBILE",/,

1 5X, " REGION SORPTION NON-EQUILIBRIUM *,1PE12.6/

1 5X,"KIMO : DAMKOHLER # REPRESENTING IMMOBILE",/,

1 5X, " REGION SORPTION NON-EQUILIBRIUM *,1PE12.6)
241  FORMAT(/,5X,"CALCULATED FRACTIONAL RETARDATION FACTORS®,/,

1 QS "/,

1 5X, "BETAL *,1PE12.6/

1 5X, "BETA2 *,1PE12.6/

1 5X, "BETA3 *,1PE12.6/

1 5X, "BETA4 " ,1PE12.6)
242  FORMAT(/,5X,"CALCULATED DIMENSIONLESS DECAY PARAMETERS®,/,

1 X, ™ = mmm o s

1 5X, "EM1 *,1PE12.6/

1 5X, "EM2 *,1PE12.6/

1 5X, "EIM1 *,1PE12.6/

1 5X, "EIM2 *,1PE12.6)
230  FORMAT(/5X, " INFLOW BOUNDARY CONDITION DATA",/,

1 BX, " —mmmmmmmmm e "/,

1 5X, " INFLOW BOUNDARY CONDITION TYPE *,12)
1234 FORMAT(//5X, "CONSTRUCTED INFLOW CONCENTRATION HISTOGRAM®,/,

1 15X, "TIME INTERVAL",11X, "CONCENTRATION",/,5X,48("-"))

1235 FORMAT(5X,1PE12.6," - ,1PE12.6,6X,1PE12.6)

1236 FORMAT(5X,1PE12.6," --> INFINITY *,7X,1PE12.6)

2231 FORMAT(/5X, "OUTFLOW BOUNDARY CONDITION DATA",/,
1 BX,, ¥ mmmmmmmmmm e "/

1 5X, "OUTFLOW BOUNDARY CONDITION TYPE ',i2/
1 5X, "LENGTH OF DOMAIN (FOR FINITE DOMAIN) *,1PE12.6)
2232 FORMAT(5X, "CONCENTRATION AT OUTFLOW BOUNDARY, CL ",1PE12.6)

500 FORMAT(//10X, "TIME",13X, "X",17X,"Cm",18X,"Cim"/,5X,70("-"))
510 FORMAT(5X,1PE12.6,5X,1PE12.6,5X,1PE15.6,5X,1PE15.6)

C TERMINATE MAIN PROGRAM
C

CLOSE(55)

CLOSE(66)

CLOSE(67)

END
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COMPLEX*16 FUNCTION FBAR(P)
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Laplace-transformed solution

DECLARATION OF VARIABLES

IMPLICIT NONE

INTEGER MAXPT

PARAMETER(MAXPT=50)

DOUBLE PRECISION PARAM(19)

DOUBLE PRECISION CMO,CIMO,SM20,SIM20,DELTA,LENGTH,CL ,XX
DOUBLE PRECISION TIME,TS(MAXPT) ,DELC(MAXPT)

DOUBLE PRECISION RHOB,THETA,Q,D,PHI,THM,THIM,F,ALFA,FM,FIM,
1 KM,KIM,KM2,KIM2,LM,LM1,LM2,LIM,LIML,LIM2
DOUBLE PRECISION PCHK,FCHK

COMPLEX*16 P,SUM,TERM,FS,G10,G20,GAM1,GAM2 ,GAM3,GAM4,B,H1,H2,
1 b1,02,D3,E1,E2

COMPLEX*16 D4 ,D5,D6,CDEXP

COMPLEX*16 CMB,CIMB

INTEGER OBC,NP,N,IC

COMMON /1CS/CMO,CIMO,SM20,SIM20

COMMON /BCS/TIME,DELTA,TS,DELC,NP,OBC,LENGTH,CL ,XX
COMMON /MPNE/PARAM

COMMON /CSWITCH/IC

"LOAD"™ MPNE PARAMETERS FROM THE PARAM ARRAY

RHOB = PARAM( 1)
THETA = PARAM( 2)
Q = PARAM( 3)
D = PARAM( 4)
PHI = PARAM( 5)
F = PARAM( 6)
ALFA = PARAM( 7)
FM = PARAM( 8)
FIM = PARAM( 9)
KM = PARAM(10)
KIM = PARAM(11)
KM2 = PARAM(12)
KIM2 = PARAM(13)
LM = PARAM(14)
LML = PARAM(15)
LM2 = PARAM(16)
LIM = PARAM(17)
LIML = PARAM(18)
LIM2 = PARAM(19)

CALCULATE POROSITIES

THM
THIM

PHI*THETA
(1.DO-PHI)*THETA

TRAP POTENTIAL DIVISION BY ZERO FOR CASE OF NO IMMOBILE REGION
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PCHK
FCHK

DABS(PHI-1.D0)
DABS(F-1.D0)

IF((PCHK.LT.1.D-10) .AND. (FCHK.LT.1.D-10)) THEN
ALFA=1.DO
ENDIF

CALCULATE TRANSFORMED INFLOW CONCENTRATION HISTORY

sum = CMPLX(0.d0,0.d0,KIND=8)
do n=1,np
if(ts(n).lt_time) then
if(ts(n).le.0.d0) then
term = delc(n)/p
else
term = (delc(n)/p)*(cdexp(-p*ts(n)))
end if
else
term = CMPLX(0.d0,0.d0,KIND=8)
end if
sum = sum+term
end do
fs = sum

CALCULATE INITIAL CONDITION TERMS

G10 = (((1.DO-F)*RHOB*KIM2/(P+KIM2+LIM2))*SIM20
+(THIM+(1.DO-F)*RHOB*F IM*KIM)*CIMO)/
((P*(THIM+(1.DO-F)*RHOB*F IM*KIM))+(THIM*L IM)
+((1.DO-F)*RHOB*L IM1*F IM*K M)
+((1.DO=F)*RHOB* (1 .DO-FIM)*K IM*KIM2* (P+LIM2)/
(P+KIM2+LIM2) + ALFA))
(THM+F*RHOB*FM*KM)*CMO
+((F*RHOB*KM2) / (P+KM2+LM2))*SM20

G20

CALCULATE GAMMA TERMS

GAM1
GAM2

(1.DO+(F*RHOB*FM*KM) /THM) *P

(F*RHOB* (1 .DO-FM)*KM*KM2*( (P+LM2)/
(P+KM2+LM2)))/THM

(ALFA-((ALFA*ALFA)/
((THIM+(1.DO-F)*RHOB*F IM*K IM)*P
+(THIM*LIM)+((1.DO-F)*RHOB*L IM1*F IM*K IM)
+((1.DO-F)*RHOB* (1 .DO-FIM)*K IM*K IM2
*((P+LIM2)/ (P+KIM2+L IM2)))+ALFA)))/THM
GAM4 = LM+(F*RHOB*LM1*FM*KM)/THM

GAM3

CALCULATE COEFFICIENTS

B = THM*(GAM1+GAM2+GAM3+GAM4)
H1 = (Q-((Q*Q)+4.DO*B*THM*D)**0.5)/(2.DO*THM*D)
H2 = (Q+((Q*Q)+4.DO*B*THM*D)**0.5)/(2.DO*THM*D)

CALCULATE SOLUTION FOR SEMI-FINITE DOMAIN

IF(OBC.EQ.1) THEN
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IF((DABS(Q) .LE.0.DO) .AND. (DELTA.LE.0.DO)) THEN
E1l = FS-(ALFA*G10+G20)/B
ELSE
El = (Q/(Q-THM*DELTA*D*H1))*(FS-(ALFA*G10+G20)/B)
END IF
CMB = E1*CDEXP(H1*XX) + ((ALFA*G10)+G20)/B

ELSE

CALCULATE SOLUTION FOR FINITE DOMAIN, TYPE 11

IF(OBC.EQ.2) THEN

IF((DABS(Q) .LE.0.DO) .AND. (DELTA.LE.0.D0)) THEN

D1 = H2*CDEXP(H2*LENGTH)-H1*CDEXP(H1*LENGTH)

D2 = (FS-((ALFA*G10)+G20)/B)*H2*CDEXP(H2*LENGTH)

D3 =-(FS-((ALFA*G10)+G20)/B)*H1*CDEXP(H1*LENGTH)
ELSE

D1 = H2*(Q-THM*DELTA*D*H1)*CDEXP (H2*LENGTH)

1 -H1*(Q-THM*DELTA*D*H2)*CDEXP (H1*LENGTH)

D2 = gq*(FS-((ALFA*G10)+G20)/B)*H2*CDEXP(H2*LENGTH)
D3 =-q*(FS-((ALFA*G10)+G20)/B)*H1*CDEXP(H1*LENGTH)
END IF
E1 = D2/D1
E2 = D3/D1
CMB = E1*CDEXP(H1*XX) + E2*CDEXP(H2*XX)
1 + ((ALFA*G10)+G20)/B
ELSE

CALCULATE SOLUTION FOR FINITE DOMAIN, TYPE 1

IF(OBC.EQ.3) THEN

IF((DABS(Q) .LE.0.DO) .AND. (DELTA.LE.0.D0)) THEN

D4 = CDEXP(H2*LENGTH)-CDEXP(H1*LENGTH)
D5 = (FS-((ALFA*G10)+G20)/B)*CDEXP(H2*LENGTH)
1 - (CL/P-((ALFA*G10)+G20)/B)
D6 =-(FS-((ALFA*G10)+G20)/B)*CDEXP(H1*LENGTH)
1 +(CL/P-((ALFA*G10)+G20)/B)
ELSE
D4 = (Q-THM*DELTA*D*H1)*CDEXP(H2*LENGTH)
1 — (Q-THM*DELTA*D*H2)*CDEXP (H1*LENGTH)
D5 = gq*(FS-((ALFA*G10)+G20)/B)*CDEXP(H2*LENGTH)
1 -(CL/P-((ALFA*G10)+G20)/B)*(Q-THM*DELTA*D*H2)
D6 =-q*(FS-((ALFA*G10)+G20)/B)*CDEXP(H1*LENGTH)
1 +(CL/P-((ALFA*G10)+G20)/B)*(Q-THM*DELTA*D*H1)
END IF
E1 = D5/D4
E2 = D6/D4
CMB = E1*CDEXP(H1*XX) + E2*CDEXP(H2*XX)
1 + ((ALFA*G10)+G20)/B
END IF
END IF

END IF
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INVERT LAPLACE-TRANSFORM SOLUTIONS FOR EITHER Cm OR Cim

IF(IC.EQ.1) THEN
FBAR = CMB
ELSE
IF((PCHK.LT.1.D-10) .AND. (FCHK.LT.1.D-10)) THEN
CIMB = CMPLX(0.d0,0.d0,KIND=8)
ELSE
CIMB = CMB*(alfa/

(p*Cthim+(1.dO-F)*rhob*Fim*Kim)+thim*lim
+(1.dOo-F)*rhob*liml1*Fim*Kim
+(1.d0-F)*rhob*(1.d0-Fim)*Kim*kim2
*((p+1im2)/(p+kim2+1im2))
+alfa)) + G10

END IF

FBAR = CIMB
END IF
RETURN

END FUNCTION FBAR

FUNCTION CDEXP(Z2)

KEEXAAAAAAXAAXAAXAXAAXX

COMPLEX DOUBLE PRECISION EXPONENTIAL FUNCTION
Coded by JP Keizer, 2002 01

COMPLEX (KIND=8) :: CDEXP
COMPLEX (KIND=8), INTENT(IN) :: Z2

REAL (KIND=8) :: I real part of z

REAL (KIND=8) :: B I imaginary part of z
A = REAL(Z2,KIND=8)

B = AIMAG(Z2)

CDEXP = DEXP(A)*(CMPLX(DCOS(B) ,DSIN(B),KIND=8))

END FUNCTION CDEXP

R R R R R R o o R R R AR R AR

INCLUDE "HOOGD.FOR™
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Appendix A3: Listing of files for the example problem (van Genuchten, 1974: Expt. 3-5)
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van

W

w

OOFROO0OO0OO0OO0OO0OO0ORFROUONWOOOOOOO0OO0OO0OO0OOOWOOUTWO R

Genuchten EXPT. 3-5: 2,4,5-T/Glendale loam

.222D+0
.4555D+0
.975D+0
-313D+0
.880D+0
-880D+0
.000D-2
-500D+0
-500D+0
-426D+0
.426D+0
.660D+0
.660D+0
-058D+0
.000D+0
.000D+0
.000D+0
-000D+0
.000D+0

-000D+0
.306D+0

.000D+0
-000D+0
.000D+0
.000D+0
.000D+0
-000D+0

.000 30.
.000

RHO :

THETA :
Q :
D :

PHI

ALPHA
FM
FIM
KM

km2

LM
Lm1
Lm2

NP
1.000D+0
0.000D+0

BULK DENSITY (G/CM3)

TOTAL WATER CONTENT (CM3/CM3)

DARCY FLUX (CM/D)

HYDRODYNAMIC DISPERSION COEFFICIENT (CM2/D)

: PROPORTION OF MOBILE PORE WATER (-)
Ll

FRACTION OF ACCESSIBLE SORPTION SITES (-)

: FIRST-ORDER MASS TRANSFER COEFF. (1/D)

: FRACTION OF INST. SORBENT IN MOBILE REGION (-)

: FRACTION OF INST. SORBENT IN IMMOBILE REGION (-)
> MOBILE-EQUILIBRIUM SORPTION CONSTANT (CM3/G)

KIM :

IMMOBILE-EQUILIBRIUM SORPTION CONSTANT (CM3/G)

: MOBILE-1ST ORDER SORPTION KINETIC COEFF. (1/D)
kKim2 :

IMMOBILE-1ST ORDER SORPTION KINETIC COEFF. (1/D)

> MOBILE/DISSOLVED-1ST ORDER DECAY CONSTANT (1/D)

: MOBILE/SORBED-1ST ORDER DECAY CONSTANT (1/D)

: MOBILE/R-L SORBED-1ST ORDER DECAY CONSTANT (1/D)
LIM :

LIML :

LIM2 :
IBC :

: number of points describing inflow concentration

OBC :
LENGTH :
CL :

CMO :
CIMO :
SM20 :
SIM20 :
NPRO :
NBTC :

: TMIN,TMAX,DT

000 0.500

IMMOBILE/DISSOLVED-1ST ORDER DECAY CONSTANT (1/D)
IMMOBILE/SORBED-1ST ORDER DECAY CONSTANT (1/D)
IMMOBILE/R-L SORBED-1ST ORDER DECAY CONSTANT (1/D)
INFLOW BOUNDARY CONDITION

OUTFLOW BOUNDARY CONDITION

LENGTH OF COLUMN (FOR TYPE Il INFLOW B.C. ONLY)
CONCENTRATION x=L (FOR OBC=3 ONLY)
MOBILE/DISSOLVED-INITIAL CONCENTRATION

IMMOBILE DISSOLVED-INITIAL CONCENTRATION
MOBILE/R-L SORBED-INITIAL CONCENTRATION
IMMOBILE/R-L SORBED-INITIAL CONCENTRATION
NUMBER OF CONCENTRATION PROFILES

NUMBER OF BREAKTHROUGH CURVES

Page: 1
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MPNE ANALYTICAL SOLUTION FOR 1-D TRANSPORT
VERSION 4.1

van Genuchten EXPT. 3-5: 2,4,5-T/Glendale loam

BASIC INPUT DATA

RHOb : BULK DENSITY 1.222000E+00
THETA : TOTAL WATER CONTENT 4 .555000E-01
Q : DARCY FLUX 3.975000E+00
D - HYDRODYNAMIC DISPERSION COEFF. 5.313000E+00
MODEL SPECIFIC DATA
PHI : PROPORTION OF MOBILE PORE WATER 8.800000E-01
f : MASS FRACTION OF SORBENT COMPRISING

MOBILE REGION 8.800000E-01
ALFA : FIRST-ORDER MASS TRANSFER COEFF. 3.000000E-02
FM : FRACTION OF SORBENT IN MOBILE REGION

FOR INSTANTANEOUS SORPTION 5.000000E-01
FIM : FRACTION OF SORBENT IN IMMOBILE REGION

FOR INSTANTANEOUS SORPTION 5.000000E-01
KM : MOBILE EQUIL. SORPTION COEFF. 4.260000E-01
KIM : IMMMOBILE EQUIL. SORPTION COEFF. 4_.260000E-01
km2 : FIRST-ORDER SORPTION KINETIC COEFF.

FOR MOBILE REGION 6.600000E-01
kim2 - FIRST-ORDER SORPTION KINETIC COEFF.

FOR IMMOBILE REGION 6.600000E-01
FIRST-ORDER DECAY COEFFICIENTS
LM : MOBILE REGION 5.800000E-02
LM1 : MOBILE REGION INSTANTANEOUS SITES 0.000000E+00
LM2 : MOBILE REGION RATE-LIMITED SITES 0.000000E+00
LIM - IMMOBILE REGION 0.000000E+00
LIM1 : IMMOBILE REGION FOR INSTANTANEOUS

SORPTION SITES 0.000000E+00
LIM2 : IMMOBILE REGION FOR RATE-LIMITED

SORPTION SITES 0.000000E+00
INITIAL CONCENTRATIONS
CMO 0.000000E+00
CIMO 0.000000E+00
SM20 0.000000E+00
SIM20 0.000000E+00
CALCULATED DIMENSIONLESS PARAMETERS
R : TOTAL RETARDATION FACTOR 2.142858E+00
P : PECLET NUMBER 5.599478E+01
OMEGA : DAMKOHLER # REPRESENTING PNE 2.264151E-01
KMO : DAMKOHLER # REPRESENTING MOBILE

REGION SORPTION NON-EQUILIBRIUM 1.140937E+00
KIMO - DAMKOHLER # REPRESENTING IMMOBILE
REGION SORPTION NON-EQUILIBRIUM 1.555823E-01

CALCULATED FRACTIONAL RETARDATION FACTORS

BETAL1 6.453332E-01
BETA2 2.346668E-01
BETA3 8.799998E-02
BETA4 3.200002E-02
CALCULATED DIMENSIONLESS DECAY PARAMETERS
EM1 1.754620E-01
EM2 0.000000E+00
EIM1 0.000000E+00
EIM2 0.000000E+00
INFLOW BOUNDARY CONDITION DATA
INFLOW BOUNDARY CONDITION TYPE 3
CONSTRUCTED INFLOW CONCENTRATION HISTOGRAM

TIME INTERVAL CONCENTRATION
0.000000E+00 - 9.653000E+00 1.000000E+00
9.653000E+00 --> INFINITY 0.000000E+00

OUTFLOW BOUNDARY CONDITION DATA

OUTFLOW BOUNDARY CONDITION TYPE 1

Page: 1
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LENGTH OF DOMAIN (FOR FINITE DOMAIN)
CONCENTRATION AT OUTFLOW BOUNDARY, CL

-000000E+00
-000000E-01
.0OO0O0O00E+00
-500000E+00
-000000E+00
-500000E+00
.0O0O0O0O00E+00
-500000E+00
-000000E+00
-500000E+00
.0OO0O000E+00
-500000E+00
-000000E+00
-500000E+00
.0OO0O0O00E+00
-500000E+00
-000000E+00
-500000E+00
.0OO0O000E+00
-500000E+00
-000000E+01
-050000E+01
-100000E+01
-150000E+01
.200000E+01
-250000E+01
.300000E+01
-350000E+01
-400000E+01
-450000E+01
-500000E+01
-550000E+01
.600000E+01
-650000E+01
.700000E+01
. 750000E+01
-800000E+01
-850000E+01
-900000E+01
-950000E+01
-000000E+01
-050000E+01
-100000E+01
-150000E+01
.200000E+01
-250000E+01
.300000E+01
-350000E+01
-400000E+01
-450000E+01
-500000E+01
-550000E+01
.600000E+01
-650000E+01
.700000E+01
. 750000E+01
-800000E+01
-850000E+01
-900000E+01
-950000E+01
-000000E+01
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.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
-000000E+01
-000000E+01
.0O00O000E+01
-000000E+01
-000000E+01
-000000E+01
.0O00O000E+01
-000000E+01
.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000000E+01
-000000E+01
.000O000E+01
-000000E+01
.000000E+01
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3.000000E+01
0.000000E+00

.000000E+00
-000000E+00
.611927E-08
.462600E-06
.659332E-05
.601337E-04
.883919E-03
-994159E-02
.661045E-02
.413790E-01
.271479E-01
.086689E-01
.798883E-01
.407473E-01
-929360E-01
-380186E-01
.771169E-01
.110494E-01
.404725E-01
.659530E-01
.879139E-01
.069667E-01
.234331E-01
.376621E-01
.499449E-01
.593591E-01
.578125E-01
.290889E-01
.684680E-01
-901281E-01
.115241E-01
.416049E-01
.817834E-01
.306715E-01
.866687E-01
.485861E-01
.155767E-01
.869848E-01
.622562E-01
-409005E-01
.224782E-01
.065967E-01
.290810E-02
.110687E-02
.092654E-02
.213619E-02
.453671E-02
.795707E-02
.225082E-02
. 729285E-02
.297645E-02
.921072E-02
.591845E-02
-303389E-02
.050110E-02
.827244E-02
.630730E-02
.457104E-02
.303406E-02
.167100E-02
.046010E-02

.000000E+00
.000000E+00
.118820E-09
.828754E-07
.711387E-06
-949420E-05
.828860E-04
.646798E-03
.606429E-03
.172669E-02
.526387E-02
.669158E-02
.133708E-01
.529397E-01
.937266E-01
.346358E-01
.749438E-01
.141560E-01
.519283E-01
.880243E-01
.222205E-01
.545654E-01
.849547E-01
-133900E-01
-399029E-01
.644894E-01
.865259E-01
.035209E-01
-116990E-01
.089707E-01
-962393E-01
.760906E-01
.511483E-01
.233848E-01
.941348E-01
.642992E-01
.345093E-01
.052220E-01
.767714E-01
.493976E-01
.232666E-01
.984851E-01
.751131E-01
.531734E-01
.326606E-01
.135477E-01
.957920E-01
.793395E-01
.641287E-01
-500932E-01
.371645E-01
.252723E-01
.143491E-01
.043270E-01
.514116E-02
.672937E-02
-903264E-02
.199522E-02
.556474E-02
-969222E-02
.433199E-02
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1. Introduction

Mathematical models of solute transport are important tools for solving problems
involving groundwater contamination. Potential applications of models include planning
of site investigations, risk assessment, and design of remedial actions. These models
must be capable of representing the most significant processes affecting the transport of
solutes. There is evidence to suggest that models based on assumptions of ideal behavior
ignore fundamental characteristics of the transport of solutes (reviews are presented by
Bouchard et al., 1988 and Brusseau and Rao, 1989a,c).

The transport of sorbing solutes is generally modeled with an idealized model, in
which the porous is represented as an interconnected continuum, and sorption is
represented as an equilibrium process (instantaneous and reversible) with a linear
isotherm. For a pulse input, this approach predicts symmetrical, bell-shaped break-
through curves. Departures from this ideal behavior have been observed at scales of
investigation ranging from column experiments to field-scale tests. Two examples of
nonideality are shown in Fig. 1. Fig. 1a plots results from a column experiment with the
herbicide 2,4,5-D (2,4,5-trichlorophenoxyacetic acid) reported by van Genuchten et al.
(1977). Fig. 1b, taken from Goltz and Roberts (1986a), illustrates concentrations of
tetrachl oroethene observed during the Stanford—Waterloo natural-gradient tracer test. Of
particular importance are the long tails of the breakthrough curves. If tailing is not
considered, then the ability to provide quantitative answers to basic questions is severely
compromised. For example, in the context of pump-and-treat remediation of contami-
nated sites, the duration of pumping and the volume of treated water cannot be estimated
reliably.

Two general mechanisms have been offered as explanations for nonideal behavior.
The first mechanism is adapted from the dual porosity hypothesis and is designated
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Fig. 1. Evidence of transport nonequilibrium from a field-scale experiment (Goltz and Roberts, 1986a,b).
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physical nonequilibrium (PNE). Originally developed to represent flow in densely
fractured porous media, the dual porosity hypothesis idealizes the porous medium as two
interacting continua. In the first continuum (the mobile region), the pore water is
relatively mobile, while in the second (the immobile region), advection is minimal
(Coats and Smith, 1964). Solute transport in a dual porosity medium is characterized by
early breakthrough resulting from rapid advective transport in the mobile region and
tailing resulting from the slow diffusive mass transfer between the mobile and immobile
regions.

Different models for dual porosity have been developed based on assumptions about
the geometry of the mobile and immobile regions. Geometrical models conceive of the
immobile region as an idealized assemblage of simple elements, for example, as uniform
slabs and spheres (e.g., Huyakorn et a., 1983). An aternative approach is to represent
the diffusive flux between the mobile and immobile regions by a first-order mass
transfer reaction. The first-order mass transfer approach has been applied to cases of
aggregated porous media (van Genuchten and Wierenga, 1977; van Genuchten et d.,
1977), and discrete layering (Brusseau, 1991). The first-order approach has also been
applied to simulate transport in heterogeneous aquifers (Brusseau and Rao, 1989b;
Brusseau and Srivastava, 1997). In this context, the approach is purely phenomenologi-
cal and the mass transfer coefficient becomes merely a fitting parameter.

PNE affects the transport of both sorbing and nonsorbing solutes and is commonly
associated with aggregated and fractured porous media. However, tailing has also been
observed in column studies with sorbing organic solutes in uniform, granular porous
media (e.g., Liu et a., 1991). Therefore, a second mechanism has been proposed to
explain nonideal behavior of organics. This second mechanism is designated sorption
nonequilibrium (SNE). SNE represents the combined effects of intrasorbent (intraor-
ganic or intramineral) diffusion and rate-limited interactions between the solute and
sorbent. In the two-site conceptualization, sorption is assumed to occur at two sites: at
the first site, sorption is an equilibrium process; at the second site, sorption is a
rate-limited process. The rate-limiting sorption reaction is represented as a first-order
reaction.

Many analytical solutions based on the mobile—immobile conceptualization, referred
to as two-region models, have been developed. Examples included those of van
Genuchten and Wierenga (1976) and Goltz and Roberts (1986h). Carnahan and Remer
(1984) presented an analytical solution incorporating rate-limited sorption. Analytical
solutions based on the two-site model have also been developed by Cameron and Klute
(1977) and van Genuchten and Wagenet (1989). It has been long recognized that
two-region and two-site models are mathematically identical. Several studies used this
identity to develop analytical solutions to handle either physical or chemical nonequilib-
rium (i.e., two-site or two-region models) (e.g., Leij et a., 1993; Toride et al., 1993; Le&ij
and van Genuchten, 2000). However, none of the existing solutions can be used to
handle both nonequilibrium processes simultaneously.

Brusseau et al. (1989) formulated a model that incorporates both physical and
sorption nonequilibria, which they called the multiprocess nonequilibrium (MPNE)
model. Brusseau et a. (1992) extended the model to consider transformation reactions
represented as first-order decay processes. The model integrates the two-region and
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two-site conceptualizations. The mobile and immobile regions are each subdivided into
three compartments. The first compartment in each region is the dissolved phase and the
second and third compartments constitute the two sites of the sorbed phase. The sorption
sites are split into a fraction where sorption occurs instantaneously, and a remaining
fraction where sorption follows first-order kinetics. Transport between the mobile and
immobile regions is modeled with a first-order mass transfer approach.

Several numerical models implementing the MPNE model have been developed.
Brusseau et al. (1992) used a one-dimensional finite difference solution to simulate
column experiments. Sudicky (personal communication, 1989) developed the first
two-dimensional finite element solution to the MPNE equations. The solution is based
on the Laplace Transform Galerkin (LTG) technique presented in Sudicky (1989, 1990)
and was used by Brusseau et al. (1989) to assess the relative contributions of chemical
sorption kinetics, intraparticle diffusion and geologic heterogeneity on plume evolution.
Therrien et al. (1990) extended the LTG solution to three dimensions and applied their
model to the interpretation of forced-gradient tracer tests in heterogeneous sand aquifers.
Recently, Zhang and Brusseau (1999) have published an important field-scale applica-
tion of the MPNE model with a three-dimensional numerical solution based on the
modified method of characteristics.

In this paper, we present an analytical Laplace transform solution for one-dimen-
sional transport with MPNE. Exact analytical or semi-analytical solutions generally can
be derived only for problems involving homogeneous media and simple boundary
conditions. In light of these restrictions, and the existence of general numerical
solutions, the obvious question is: why develop an analytical solution for MPNE? The
first answer is that these sophisticated numerical solutions demand verification. Second,
there exists a need for simple solutions that can be used as screening tools, particularly
for preliminary modeling in the absence of data. Finally, analytical solutions are ideally
suited for the interpretation of experimental results obtained under controlled laboratory
conditions. For this application, their freedom from spatial and temporal discretization
requirements is a significant advantage over numerical solutions.

The solution is derived using the Laplace transform technique, with the final results
obtained by numerical inversion of the transformed solution. Special attention is directed
towards implementing the solution in a code that is robust and capable of predicting
concentrations over a wide range of environmental interest. The solution is verified
using the results of a numerical simulation of a column experiment. The identifiability of
input parameters for laboratory-scale applications is examined by simulating van
Genuchten (1974) experiments 3-5.

2. Mathematical formulation

In this section, we develop the governing equations of the MPNE model in order to
clarify each equilibrium /noneguilibrium process which constitute the model. This level
of detail in the mathematical formulation is typically missing from the literatures on
two-region and/or two-site models (e.g., Brusseau et al., 1989).
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2.1. Assumptions

The key assumptions of the MPNE model are summarized below.(1) The domain is
represented as a dual porosity continuum. Mass transfer between the mobile and
immobile regions is modeled as a first-order mass transfer reaction.(2) Sorption occurs
at both equilibrium and rate-limited sites. At the equilibrium sites, sorption is instanta-
neous and reversible and is governed by a linear isotherm. At the rate-limited sites,
sorption is represented as a first-order reaction. The mobile and immobile regions are
characterized by separate sorption properties.(3) Transformation reactions are modeled
as first-order decay processes. If microbially-mediated reactions are represented using
this approach, then it is tacitly assumed that they are not limited by substrate availability
(e.g., oxygen is in unlimited supply) and that contaminant concentrations are relatively
low (Criddle et al., 1991). For maximum generality, the dissolved and sorbed phases in
the mobile and immobile regions are assigned separate decay rates.

Several additional assumptions are required for a tractable one-dimensional analytical
treatment:

[

. The material properties are spatialy uniform and temporally constant.

. The Darcy flux is steady, one-dimensional, and spatially uniform.

3. Longitudinal dispersion is assumed to be a Fickian process, characterized by a
constant dispersion coefficient. Dispersion in the transverse directions is neglected.

4. The initia concentrations in the domain are uniform. For maximum generality, the

initial concentrations are specified separately for the dissolved and sorbed phases.

N

2.2. Governing equations

The MPNE model is cast in terms of six concentrations. one dissolved phase and two
sorbed phase concentrations for each of the mobile and immobile regions. In the
following development, use is made of mass balance equations and constitutive relations
to derive the six equations, which comprise the MPNE model.

2.2.1. Mobile region
Within the mobile region, the MPNE model accounts for advective—dispersive
transport, mobile—immobile mass transfer, equilibrium and rate-limited sorption and
first-order transformation reactions. The statement of mass conservation for the dis-
solved phase in the mobile region is written as:
I 6nCr) n W fpSy) _ _&_GA ~G. -G, (1)
ot ot X m Sm
The terms appearing in this and all subsequent equations are defined in the Notation.
The left-hand side of the mass balance equation represents the time rate of change of
mass in the dissolved and sorbed phases in the mobile region. In this expression, the
term f designates the mass fraction of sorbent that is accessible to the dissolved phasein
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the mobile region. Solute in the sorbed phase is partitioned between the equilibrium and
rate-limited sorption sites:

Sn = Sn1 t Sz (2)

The first term on the right-hand side in Eq. (1) is the advective—dispersive mass flux
in the dissolved phase and is defined as:

oC,
In= _amD_+qu (3)

The second and third terms on the right-hand side, G, and G, , are sinks
representing first-order transformation reactions in the dmolved "and sorbed’ phases. The
first-order transformation sink terms are written as:

G, = OnAnCy, (4)

GASm=fp()‘SmS'nl+/\SmZSn2) (5

For the first-order mass transfer model, the sink term representing mobile—immobile
interaction is expressed as.

m=a(cm_Cim) (6)
Assembling all of the terms in the original mass balance, Eq. (1) yields:
a( Omcm) aSml aSnZ 0 aCm
it - ( )

d
+1 = —6,D0—2) = —(dCp) — Oy AnC
at Pt Pt aX ax) ax(q m) = b AnCn

- fP()\smSml + /\szsmz) —a(C, = Cp)
(7)
The sorbed phase concentration at the instantaneous sorption sites is defined in terms
of the following equilibrium constitutive relation:
Sml = Fm chm (8)

In this relation, F,, represents the mass fraction of sorption sites in the maobile region
where sorption is instantaneous. The sorbed phase concentration at the rate-limited sites
is defined in terms of a mass balance equation:

d 2
?: =km2[(1_Fm)KmCm_sm2] _/\smzsmz (9)

Substituting for the sorbed phase concentrations and invoking the assumption of
constant material properties yields the final form of the transport equation for the mobile

region:

aC
(O + PP Kin) 2= + (O A + fpAg, FinKin )G + (Ciy = i)

9’C,,  9C,
+fpkaa[ (1= Fp) KinCry — Sz =0nD— 5 —d—— (10)
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2.2.2. Immobile region

The governing equations for the immobile region are analogous to those derived for
the mobile region, with the exception that advection and dispersion are not considered.
The statement of mass conservation for the immobile region is written as:

a( OimCim) n a((l _f)pSm)
ot ot

The left-hand side of the mass balance equation represents the time rate of change of
mass in the dissolved and sorbed phases in the immobile region. In this expression, the
term (1 — f) designates the mass fraction of sorbent that is accessible to the dissolved
phase in the immobile region. Solute in the sorbed phase is partitioned between the
equilibrium and rate-limited sorption sites:

Sm=Sm1t+ Sm2 (12)

The mobile—immobile mass transfer term, G,,,, is defined by Eq. (6). The remaining
components of the right-hand side sink term are analogous to those for the mobile region
and are written as:

G)\‘m = bim AimCim (13)

G)\Sm: (l_f)P()‘smISm1+ )\stsz) (14)

The expressions for the sinks are similar to those presented for the mobile region,
noting that the sign of the mobile—immobile mass transfer term is reversed.
Assembling all of the terms in the mass balance, Eq. (11) yields:

- -G, -G, +Gj (11)

a( OimCim) aSml aSmZ
SmEm) (1 f +(1-f
ot (A-Hp—~+@=-F)p—
= = OimAimCim — (1 _f)p()‘smlsml + /\SmZSmZ) + a(cm - Cim) (15)

The sorbed phase concentrations at the instantaneous and rate-limited sorption sites
are defined by:

Sm1 = Fim KinCim (16)
asz
a_t :kimz[(l_ l:im)KimCim_SmZ] _/\Sﬁmzsmz (17)

In these relations, F,,, represents the mass fraction of sorption sites in the immobile
region where sorption is instantaneous.

Substituting for the sorbed phase concentrations and invoking the assumption of
constant material properties yields the fina form of the transport equation for the
immobile region:

0C,
(gim + (1_ f)pFimKim)a_tlm + (oimAim + (1 _f)pAsmlFim Kim)Cim

+ (l - f)kimz p[(l - Fim) KimCim - sz] = a(Cm - Cim) (18)
The governing equations presented here differ from Egs. (4) and (5) of Brusseau et al.
(1992). In particular, their equations are missing decay terms for the equilibrium sorbed
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phases. The equations defining the concentrations in the equilibrium sorbed phases are
more correctly interpreted here as constitutive relations rather than mass balance
equations.

2.3. Initial and boundary conditions

2.3.1. Initial conditions

The model of Brusseau et a. (1992) assumes that the domain is initially devoid of
contaminants. The initial conditions considered by our analytical solution are somewhat
more general. It is assumed that the domain is uniformly contaminated and that the
initial concentrations in each of the compartments are specified independently:

Cn(x,0)=C2 (19a)
Cim( x,0) = Ci, (19b)
Sn2(0) = iz (19c)
Sm2(0) = S?nZ (19d)

If the initial condition of the domain is such that C2 + 0, and has existed as such for
along period of time, then the following initial concentrations may be assigned:

C.(x,0) = C,?1 (20a)
Con( X.0) = 8 (200)
Sn2(0) = KCo (20c)
sz(o) = KimCr?\ (ZOd)

2.3.2. Boundary conditions

Boundary conditions are required only for the dissolved phase in the mobile region.
The model developed by Brusseau et al. (1992) considers a third-type inflow boundary
condition. For the analytical solution, a ‘‘generalized’’ inflow boundary condition
capable of representing either first or third-type conditions is used. Adopting the
notation of Leij et al. (1991), the inflow boundary condition is expressed as:

0CA(0.) ~ 8D C,(0.0) = aC[L H(t~ )] (21

where H is the Heaviside step function, designating a step input extending from time
= 0to t,. The reader should note that § = 0 and & = 1 specify first-type (Dirichlet) and
third-type (Cauchy) boundary conditions, respectively.

The finite difference solution of Brusseau et al. (1992) is necessarily restricted to a
finite domain. For analytical solutions, this restriction does not exist and both finite and
semi-infinite domains are considered here. A finite domain is specified by the following
outflow boundary condition:

a—aXCm(L,t) =0 (22)
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A semi-infinite domain is specified by the following outflow boundary condition:

Crn(0,t) = Crexp( —Ant) (23)

2.4. Analytical solutions in the Laplace domain

The final set of governing equations for the MPNE formulation comprises a set of
four linear differential equations involving four unknown concentrations, i.e., C,, C,,
S and S, described in (Egs. (10), (9), (18) and (17). The linearity of the governing
equations is important because it offers the possibility of deriving analytical solutions
using integral transform methods. The analytical solution is derived by straightforward
application of the Laplace transform. The complete derivation of the solution is given in

Neville (1992).

Step (1): apply the Laplace transform with respect to time to each of the governing
equations and to the boundary conditions.

Step (2): solve the transformed governing equations for the rate-limited phases,
expressing S, and S, in terms of C,, and C,,, respectively. The over-
bars denote Laplace-transformed quantities.

Step (3): solve the transformed mass transfer reaction by substituting for S,
expressing C,, in terms of C,, only.

Step (4): derive the final form of the transformed governing equation in terms of C,,

by substituting for C,, and S,,,. The transformed governing equation is
a linear, second order ordinary differential equation.

Step (5): derive the general solution for C,,. For the case of zero initial concentration,
the governing equation is homogeneous and the solution is obtained direct-
ly. For the case of nonzero initial concentration, the solution is derived as
the sum of a complementary and a particular solution.

Step (6): solve for the undetermined coefficients in the general solution by imposing
the transformed boundary conditions. Separate solutions are develop-
ed separately for the cases of a semi-infinite and finite domain.

Semi-infinite domain

— q Co o 2 g
C.=—|—|1—exp(—pty)| — exp( H, x
m q_ GmSDHl p [ p( po)] p( 1 )
aG?+ G
_ 24
5 (24)
Finite domain
_ D, D, aG?+ G
Cn=—exp(H;x) + —exp(H,x) + ——— (25)
D, D, B
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where
q-19%+4B6,D
H, = (26a)
26D
q+ g+ 4B6,D
H,= (26b)
26,D
D;=H,(q— 6,6DH;)exp(H,L) —H;(q— 6,6DH,)exp(H,L) (26¢)
aCo o g"’ Gg
D,= T(l—exp( Pto)) —d—¢ Hoexp(H,L) (26d)
aC, aG?+ G
Dy=— T(l_ exp( Ply)) —d——p5— | Hiexp(H, L) (26e)
B=6, [ +1,+1;+1,] (26f)
fp
I = 1+0_Fme p (269)
1 k +A
Fzz_ fp(l_Fm)KmM (26h)
0 p+ kmz+)\$“2
1 [ay—a? .
Ir;=— (26i)
O Y
fp .
H:Am-‘ra—m/\smll:me (261)
Y= p(aim + p(l _f)FimKim) + Him/\im + p(l_1:)|:imKim)‘S|m1
p+ /\S
(L= 1) (L= Fip) Ky — 22— 4 (26K)

P+Ag,, + Kimz
The terms G2 and G are associated with the initial conditions and are defined as:

P(l _f)kimz
pP+As  + Kim2

0:
1

Somz + (eim + P(l_f)Fim Kim)CiOm

’ [ P(Oim + (1 — ) FiKip) + 0 Ay + P(l_f))\smlFim Kim

-1

1 f)(1—F VKo kP ASme As 27

+ _ —E k. m2 + a

P( )( |m) im™im2 p+ kim2+ /\S‘mz « ( )
0 0 pfka 0

G = (6, + pfF,K,)Co + L, (27b)

p+Kp,t+ Ag
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2.4.1. Special cases

The advantage of the solution technique described here is its ability to represent a
very general physical conceptuaization, with flexible boundary and initial conditions.
For example, when the SNE parameters, F,, and F,.,, are set equal to 1.0 (i.e, all sites
are equilibrium sites), the solution collapses to the two-region model. Similarly, when
the mobile porosity is set equal to the total porosity (i.e,, 6,,= 6) and the sorbent is
specified to be completely accessible to the dissolved phase (i.e., f= 1.0), the solution
reduces to the two-site model. Solutions for these special cases have been presented by
van Genuchten and Wagenet (1989).

The solution developed here is aso a relatively genera model for equilibrium
transport (specifying the porosity as entirely mobile and the sorption sites as all
equilibrium-controlled). For a first-type (Dirichlet) inflow boundary condition (& = 0),
the solution encompasses those of Ogata and Banks (1951), Lapidus and Amundson
(1952), and Bear (1972, p. 630) for a semi-infinite domain, and Cleary and Adrian
(1973) for afinite domain. For a third-type (Cauchy) inflow boundary condition (& = 1),
the solution encompasses those of Bastian and Lapidus (1956), Lindstrom et al. (1967),
and Gershon and Nir (1969) for a semi-infinite domain, and Brenner (1962) and
Dankwerts (1953) for a finite domain.

3. Evaluation and verification
3.1. Evaluation

Final values of the solution are obtained by numerical inversion of the Laplace
transform solution. The decision to numerically invert the transformed solution offers
two immediate advantages: first, the difficult step of deriving an analytical inverse is
eliminated; second, the transformed solution is generally easier to evaluate. This
approach was introduced in the hydrogeologic literature by Moench and Ogata (1981),
and is now used frequently to evaluate solutions (see for example Goltz and Oxley,
1991). The success of this approach hinges on the ability to carry out the inversion
accurately. For diffusion-dominated problems, there are severa algorithms that yield
accurate results. Unfortunately, for advection-dominated problems involving sharp fronts,
these inversion techniques generaly fail, yielding spurious results or under /overflow
problems.

The groundwater modeling group at the University of Waterloo has obtained excel-
lent results using the inversion algorithm developed by de Hoog et al. (1982). This
algorithm has been used for both numerical models (LTG method) and analytical
solutions, and has been applied to a broad spectrum of conditions, ranging from pure
diffusion to almost pure advection (Therrien et al., 1990; Sudicky and McLaren, 1992).
The solution is implemented in a FORTRAN program. A copy of the code with
documentation is available from the first author, free upon request.

3.2. Verification

The implemented solution has been tested extensively. We report here only the
testing of the full MPNE formulation. Because no other analytical solutions based on the
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Table 1

Parameters for experiments 1-4

Parameter Vaue

Bulk density p 1.360 g/cm?®
Darcy flux g 5.11 cm/day
Dispersion coefficient D 3.673 cm®/day
Total water content 6 0.473
Proportion of mobile pore water ¢ 0.929
Fraction of mobile sorption sites f 0.929
Fraction of equilibrium sorption sites F, 0.50

Fraction of equilibrium sorption sites F;,, 0.50

Mass transfer coefficient « 0.075 day ~*
Sorption coefficient K,, 0.429 cm® /g
Sorption coefficient K;, 0.416 cm®/g
Sorption rate constant K, 0.663 day ~*
Sorption rate constant K;,, 0.663 day !
Pulse period t, 7.672 day
Column length L 30.0cm

MPNE model have been reported, the solution developed here is compared against the

results from a numerical solution.

The implementation of the MPNE formulation is verified by comparison with the
Brusseau et al. (1989) simulations of the column experiments reported by van Genuchten

Table 2

Parameters for experiments 3-5

Parameter Vaue

Bulk density p 1.222 g/cm®
Total water content 6 0.456

Darcy flux q 3.975 cm/day
Pulse period t, 9.653 day
Column length L 30.0cm
Dispersion coefficient D 5.313 cm® /day
Proportion of mobile pore water ¢ 0.88

Mass transfer coefficient « 0.03 day !
Sorption coefficient K., 0.426 cm® /g
Sorption coefficient K;, 0.426 cm® /g
Sorption rate constant K, 0.66 day !
Sorption rate constant K, 0.66 day !
Fraction of equilibrium sorption sites F, 0.50

Fraction of equilibrium sorption sites F,,, 0.50

Fraction of mobile sorption sites f 0.88

Decay coefficient A, 0.058 day ~*

Decay coefficient Ag
Decay coefficient Ag ,
Decay coefficient A,

Decay coefficient Ag,
Decay coefficient Ag, ,
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Fig. 2. Verification example: van Genuchten et al. (1977). Experiments 1-4.

o
o

et a. (1977). The column experiments were conducted to study the transport of the
herbicide 2,4,5-D. The results presented by Brusseau et a. (1989) were obtained using a
one-dimensional finite difference model incorporating Crank—Nicolson time-weighting.
No information was provided about either the spatial or temporal discretizations used for
their simulations, nor was there any indication of the criteria used to select these
discretizations.

For the sake of brevity, only the comparison of the analytical and numerical solutions
for the calibration of experiments 1-4 is presented here. The dimensionless parameters
for the simulation are given in Brusseau et al. (1989, Fig. 6) but the corresponding
dimensional parameter values are not reported. The dimensional parameters are listed
here in Table 1. Some of the parameter values were obtained from van Genuchten et al.
(1977, Tables 1 and 2). The remaining values were deduced from the values of the
dimensionless parameters. The results of the analytical and numerical solutions are
shown in Fig. 2. In Fig. 2, time is expressed as dimensionless pore volumes, defined as
T=qt/L6.

4. Application of the MPNE model to van Genuchten (1974) experiments 3-5

In this section, we demonstrate the application of the MPNE model by re-visiting
another of the van Genuchten and Wagenet (1989) experiments with 2,4,5-D, numbers
3-5. Brusseau et al. (1992) simulated this experiment with their numerical solution, but
presented only a brief discussion of the identification of input parameters. We expand
upon this discussion in order to clarify the interpretation of the input. The fina
parameter set is assembled in Table 2.
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4.1. Input parameters

4.1.1. Basic data (p, 6, g, t,, L)
The basic data for the simulation are taken from van Genuchten (1974). These data
correspond to the preliminary measurements required for any simulation.

4.1.2. Dispersion coefficient, PNE parameters (D, ¢, «)

van Genuchten conducted column experiments with tritiated water to provide inde-
pendent estimates of the dispersion coefficient and PNE parameters. Tritium sorbs
relatively weakly, and its half-life of about 12 years is much longer that the duration of
the column experiments. Therefore, for the purposes of this analysis, it is assumed to be
a nonreactive tracer.

According to the conceptual model of MPNE, PNE affects both sorbing and
nonsorbing solutes. Therefore, the tritium breakthrough data are interpreted using a
two-region model. The conditions for experiments 3-5 are most similar to those
reported for experiments 3—4 by van Genuchten and Wierenga (1977). From their
analysis of the data, van Genuchten and Wierenga (1977) estimated a dispersion
coefficient, D, of 5.7 cm?/day, a proportion of mobile pore water, ¢ equal to 0.88, and
mass transfer coefficient, o of 0.10 day 1. We assume that the dispersion coefficient is
dominated by mechanical dispersion, so that the dispersion coefficient for experiments
3-5 can be estimated by scaling the dispersion coefficient with respect to the Darcy
flux. The Darcy flux for experiments 3—4 is 4.20 cm /day while the flux for experiments
3-5is 3.975 cm/day. Hence, the estimated dispersion coefficient for experiments 3-5
is 5.3 cm?/day.

A mass transfer coefficient for tritium was estimated from experiments 3—4. The
mass transfer coefficient for 2,4,5-D is estimated by adjusting the fitted value for tritium
according to the ratios of the free-solution diffusion coefficients (Brusseau et al., 1992).

a=a Dg,4,5—D
exp.3-4 DgH

where @ and agy,s 34 are the mass transfer coefficients for 2,4,5-D and experiments

3—4, respectively, and D9, and D3, are the free-solution diffusion coefficients for

2,4,5-D and 3H, respectively.

4.1.3. Sorption parameters (K, k, F, f)

van Genuchten et al. (1977) reported the results of batch sorption tests with 2,4,5-D.
The sorption data were found to follow a nonlinear Freundlich isotherm. For an
equilibrium porewater concentration C in units of p.g/cm?® and solid phase concentra-
tion Sin units of pg/g, they obtained the mildly nonlinear relation.

S=0.616C% "2

The analytical approach developed for this study does not accommodate nonlinear
solution. Hence, we follow the approach adopted by van Genuchten (1974) in using an
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equivalent linearized sorption coefficient. For a porewater concentration ranging from 0
to 10 (ng,/cmd), the linearized sorption coefficient, K', is defined by:

i Ykicdc = i 0.616C0™24C
0 0

Integrating both sides yields a linearized partitioning coefficient K' of 0.426 cm®/g.
For this simulation, it is assumed that the sorption coefficient is the same for the mobile
and immobile regions, i.e, K, =K;, =K.

The rate constant for nonequilibrium sorption is estimated by using a correlation with
batch sorption coefficients presented by Brusseau and Rao (1992):

logk, = —1.789 — 0.63log K,

where k, is the kinetic desorption coefficient, and K, is the partitioning (sorption)
coefficient.

It is assumed that the partitioning (sorption) coefficient in this relation is given by the
linearized coefficient K'. Using a value of K, of 0.426, we caculate k, = 0.66 day 1.
For this simulation, it is assumed that the mobile and immobile rate constants are the
same, i.e, K, = K-

The fractions of instantaneous sorption sites in the mobile and immobile regions are
assigned the same assumed value, F,, = F;,, = 0.5. It is also assumed that the proportion
of sorption sites that are accessible to the solute in the mobile region is egqual to the
proportion of the pore water that is mobile, i.e., f= ¢.

4.1.4. Decay coefficients

A decay rate for the dissolved phase in the mobile region was estimated by Brusseau
et a. (1992), A, =0.058 day *. It is assumed that decay only occurs in the dissolved
phase in the mobile region.

1.0 v T T T T T T T T T
c
jel
g 0.8 - —— MPNE solution |
GC) o Observed 1
o 06 | .
c
(@]
O 04t -
()]
2
® 02 F -
8 =

0.0 1 e

0.0 10.0 20.0 30.0
Time (days)

Fig. 3. Application example of the MPNE model for van Genuchten experiments 3-5.
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4.2. Results

The observed breakthrough data and results obtained from the analytical solution are
shown in Fig. 3.

5. Conclusions

In this paper, it has been demonstrated that the Laplace transform is an effective
technique for developing analytical solutions for simulating nonideadlities in solute
transport. The solution derived here is based on the MPNE model developed by
Brusseau et al. (1989, 1992) and is capable of representing a wider range of boundary
and initial conditions than their numerical solution. The advantage of the Laplace
transform technique is that it allows for straightforward derivation of analytical solutions
that incorporate a very general physical conceptualization, with a broad range of
boundary and initial conditions. The use of the algorithm of de Hoog et al. (1982) to
numerically invert the Laplace-transformed solutions yields a code that is accurate and
robust.

Quantitative analysis of field-scale processes is only possible if laboratory data are
available to estimate some of the MPNE parameters. The real utility of the solution will
be in the analysis of data obtained under controlled laboratory conditions. The analytical
solution can be readily incorporated as a subroutine in automated parameter estimation
codes. For this application, its freedom from discretization and time-stepping require-
ments represents a significant advantage over numerical models.

Notation
C concentration in mobile region dissolved phase [ ML 3]
C concentration in immobile region dissolved phase [ ML ™3]

m
St concentration at instantaneous sorption sites in mobile region [ MM ]
S concentration at rate-limited sorption sites in mobile region [MM %]
Sm1 concentration at instantaneous sorption sites in immobile region [MM 1]
Sn,  concentration at rate-limited sorption sites in immobile region [MM 1]
time elapsed since beginning of solute release [T]
Laplace transformed variable for time [T 1]
distance from inflow boundary [ L]
length of the domain for finite case [ L]
bulk density of porous medium [ ML ™3]
Darcy flux [LT 1]
hydrodynamic dispersion coefficient [ L2T 1]
total water content [—]
proportion of pore water that is mobile[—] ¢ = 6,,/6
mobile water content [-] 6,, = ¢0
immobile water content [-] 0,,, = (1 — ¢)0
mass fraction of sorbent in contact with the mobile region dissolved phase [—]
first-order mass transfer coefficient [T*]
and mobile region fraction of instantaneous sorption sites [—]

PHDP2gLOT - XT

3

me — >
3

3
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Fin immobile region fraction of instantaneous sorption sites [—]
K, mobile region equilibrium sorption coefficient [ L3M 1]

Kim immobile region equilibrium sorption coefficient [ LM 1]

Kz mobile region first-order kinetic desorption coefficient [T~*]
Kimo immobile region first-order kinetic desorption coefficient [T *]
t, duration of the finite-duration source [T]

A mobile region dissolved phase first-order decay rate [T 1]

Ns,, mobile region instantaneous sorption sites first-order decay coefficient [T 1]

As,, mobile region rate-limited sorption sites first-order decay rate [T ]

Nim immobile region dissolved phase first-order decay rate [T~ ]

Ng,,  immobile region instantaneous sorption sites first-order decay rate [T1]

immobile region rate-limited sorption sites first-order decay rate [T*]

C, solute concentration in inflow reservoir [ ML ™3]

d inflow boundary coefficient: = 0 Type 1 inflow boundary condition, = 1 Type
3 inflow boundary condition
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