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Overview 
 
There are no closed-form analytical solutions for flow into rectangular excavations. Based on the work of 
Powrie and Preene (1992) approximate approaches for estimating the steady groundwater flow into 
rectangular excavations in confined aquifers are developed for three cases: 
 
1. Flow into a “long” excavation; 
2. Flow into an approximately square excavation with a distant recharge boundary; and 
3. Flow into an approximately square excavation with a nearby recharge boundary. 
 
These cases are shown schematically below. 
 

 
 

Conceptual models for groundwater flow into rectangular excavations 
Reproduced from Powrie and Preene (1992) 

 
 
In addition to the simplified analyses, the general “shape factor” approach of Powrie and Preene  (1992) is 
presented and assessed. 
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1. Flow into a “long” excavation 
 
The conceptual model for a long excavation is shown schematically below (a >> b). 
 

 
 
An approximate expression for the steady inflow to the excavation is developed following an approach 
presented in Driscoll (1986; Groundwater and Wells, 2nd edition, p. 740). The flow rate into the excavation 
is approximated as: 
 

Q ≈2 × linear flow into sides + 2 × radial flow into each end semi-circle 
 
1. Linear flow into the long sides of the excavation 
 
The conceptual model for flow into the long side is illustrated below. The inflow into each of the long sides 
of the excavation is approximated as: 
 

𝑄𝑆 = 𝐾𝐷
(𝐻 − ℎ𝑒𝑥)

𝐿𝑜
 𝑎 

 
Here K denotes the horizontal hydraulic conductivity and D denotes the thickness of the confined aquifer. 
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2. Radial flow into the ends of the excavation 
 
The conceptual model for the flow into each end of the excavation is shown below. 

 

 
 
 
The inflow into each end of the excavation is approximated from the Thiem solution for steady radial flow: 
 

𝑄𝐸 =
1

2

[
 
 
 
 
 
 

2𝜋𝐾𝐷
(𝐻 − ℎ𝑒𝑥)

ln{
𝐿0

(
𝑏
2
)
}

]
 
 
 
 
 
 

 

The solution for the flow into each end of the excavation can be written in a simpler form as: 
 

    𝑄𝐸  = 𝜋𝐾𝐷
(𝐻 − ℎ𝑒𝑥)

ln {
2𝐿0

𝑏
}
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3. Total flow into the excavation 
 
The total flow into the excavation is therefore: 
 

𝑄 = 2𝑄𝑆 +  2𝑄𝐸  

   = 2 [𝐾𝐷
(𝐻 − ℎ𝑒𝑥) 

𝐿𝑜
𝑎] + 2 [𝜋𝐾𝐷

(𝐻 − ℎ𝑒𝑥)

ln {
2𝐿0

𝑏
}

] 

Simplifying yields: 
 
 

𝑄 = 2𝐾𝐷 (𝐻 − ℎ𝑒𝑥) [
𝑎

𝐿𝑜
+

𝜋

ln {
2𝐿𝑜

𝑏
}  

] 

 
 
This solution is identical to Powrie and Preene (1992; Equation [1]). It can also be shown that the solution is 
the confined flow equivalent to the solution for unconfined flow presented in Driscoll (1986; p. 741). 
 
Powrie and Preene (1992) compared the results of the simplified solution for a long excavation against the 
results from finite element simulations. Over the range of 0.01 < L0/a < 1, the results from the solution 
approximate the numerical results closely (within about ±20%). 
 

 
 

Figure 4. Comparison of results for a long excavation 
Reproduced from Powrie and Preene (1992) 

1.0 
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2. Flow into an approximately square excavation with a distant recharge boundary 
 
The case of an approximately square excavation with a recharge boundary located at a distance that is 
much greater than the dimensions of the excavation is shown in illustrated below. 
 
 

 
 
 

Approximately square excavation (a ≅ b), distant boundary (L0 >> a, b) 
 
 
Following the approach of Mansur and Kaufman (1962), the inflow to the excavation is estimated assuming 
radial flow to an equivalent well: 
 
 

𝑄 =
2𝜋𝐾𝐷 (𝐻 − ℎ𝑒𝑥)

ln {
𝐿𝑜

𝑟𝑒𝑞
}  

  

 
The term req represents the equivalent radius of the excavation. 
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Specification of the equivalent radius of the excavation 
 
Three approaches for specifying the equivalent radius are discussed below. Comparisons made by Powrie 
and Preene (1992) suggest that neither approach for calculating req is universally superior. 
 
Approach #1: Equivalent radius defined on the basis of the equivalent area 
 
For a circular excavation that has the same plan area as the actual rectangular excavation: 
 

𝜋𝑟𝑤−𝑒𝑞_𝐴
2 = 𝑎𝑏 

 
The equivalent radius is therefore: 
 

𝑟𝑤−𝑒𝑞_𝐴 = √
𝑎𝑏

𝜋
 

 
This is Powers and others (2007; Equation [6.8]), and Cashman and Preene (2013; Equation [7.2]. 
 
Powrie and Preene`s comparison of the results of finite element simulations and those obtained with the 
equivalent well solution based on equal area is reproduced below. For values of L0/a greater than about 2, 
the results from the simplified radial flow analysis are relatively close the numerical simulations (within 
±20%). 
 

 
 
 

Assessment of equivalent single well solution based on area 
(Reproduced from Powrie and Preene, 1992; Figure 4) 

1 10 100 L0/a 

rw-eq_A 
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Approach #2: Equivalent radius defined on the basis of the equivalent perimeter 
 
For an circular excavation that has the same plan perimeter as the actual rectangular excavation: 
 

2𝜋𝑟𝑤−𝑒𝑞_𝑃 = 2(𝑎 + 𝑏) 

 
The equivalent radius is therefore: 
 

𝑟𝑤−𝑒𝑞_𝑃 =
𝑎 + 𝑏

𝜋
 

 
This is Powers and others (2007; Equation [6.9]), and Cashman and Preene (2013; Equation [7.1]). 
 
Powrie and Preene`s comparison of the results of finite element simulations and those obtained with the 
equivalent well solution based on equal perimeter is reproduced below. For values of L0/a greater than 
about 5, the results from the simplified radial flow analysis are relatively close the numerical simulations 
(within ±10%). The results shown for the equivalent area and equivalent perimeter suggest that neither 
approach is universally superior. 
 

 
 

Assessment of equivalent single well solution based on perimeter 
  

rw-eq_P 
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Approach #3: Equivalent radius based on the approach of Mansur and Kaufman (1962) 
 
Mansur and Kaufman (1962) provide the following formula for calculating the equivalent radius of a 
rectangular excavation (their Equation [39]): 
 

𝑟𝑤−𝑒𝑞 =
4

𝜋
 √𝑏1𝑏2 

 
The quantities b1 and b2 are the half-length and half-width of the excavation, respectively. Using the present 
notation: 
 

𝑟𝑤−𝑒𝑞 =
4

𝜋
 √

𝑎

2

𝑏

2
= 

2

𝜋
 √𝑎𝑏  

 
We have not been able to find any details on the development of Mansur and Kaufman’s formula for the 
equivalent radius. However, it can be shown that their formula matches the results of the equivalent-area 
for a square excavation: 
 

𝑟𝑤−𝑒𝑞_𝐴 =
4

𝜋
 √

𝑎

2

𝑎

2
=  

2

𝜋
 𝑎 
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3. Flow into an approximately square excavation with a nearby recharge boundary 
 
The case of a square excavation with a recharge boundary located relatively close to the excavation is 
shown in illustrated below. 
 
 

 

 
Approximately square excavation (a ≅ b): nearby boundary (L0 ~ a, b) 

 
 
For the case of a nearby recharge boundary, Powrie and Preene (1992) again suggest using the equivalent 
single well approach; however, the solutions are considered to be more approximate than the solution for a 
distant recharge boundary. Powrie and Preene discuss two approximate approaches for estimating the 
steady flow into the excavation for this case. The two approximate approaches are developed in the 
following sections. 
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Approximate analysis #1 
 
The flow rate is estimated by assuming linear flow into the sides of the excavation, as shown below. 
 

 
 
 

Conceptual model for approximate analysis #1 
 
 
The inflow to the excavation is approximated as the linear flow into each side of the excavation: 
 

𝑄 = 2 ∗ [𝐾𝐷
(𝐻 − ℎ𝑒𝑥)

𝐿0
 𝑎] + 2 ∗ [𝐾𝐷

(𝐻 − ℎ𝑒𝑥)

𝐿0
 𝑏] 

 
Collecting terms: 
 
 

𝑄 = 𝐾𝐷 (𝐻 − ℎ𝑒𝑥)
2(𝑎+𝑏)

𝐿0
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The results of the first approximate solution are compared with finite element results below. The results 
from the first simplified analytical solution are relatively close to the numerical results for values of L0/a less 
than 0.1 (within 10%). For values of L0/a greater than 0.1, the simplified analytical solution underestimates 
the flows significantly. Powrie and Preene (1992) consider this analysis as too approximate, as it neglects 
flow from the corners. 
 

 
 

Assessment of simplified solution #1 for a nearby boundary 
(Reproduced from Powrie and Preene, 1992; Figure 5) 
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Approximate analysis #2 
 
For the second approximate analysis, flow into the corners of the excavation is considered using the 
average perimeter as defined by Cedergren (1989):  
 

�̅� = 2 [𝑎 + 𝑏] + 4 [
1

4
 2𝜋

𝐿𝑜

2
] 

 
Simplifying: 
 

�̅� = 2(𝑎 + 𝑏) + 𝜋𝐿𝑜 
 
Writing:  
 

𝑄 = 𝐾
(𝐻 − ℎ𝑒𝑥)

𝐿0
𝐴  

    =  𝐾
(𝐻 − ℎ𝑒𝑥)

𝐿0
 �̅�𝐷 

    = 𝐾𝐷 
(𝐻 − ℎ𝑒𝑥)

𝐿0
 ∙ [2(𝑎 + 𝑏) + 𝜋𝐿𝑜] 

Simplifying yields: 
 
 

𝑄 = 𝐾𝐷(𝐻 − ℎ𝑒𝑥) [
2(𝑎 + 𝑏)

𝐿𝑜
+ 𝜋] 

 
 
The solution for the approximate analysis #2 is identical to Powrie and Preene (1992; Equation 4). The 
results of the second approximate solution are compared with finite element results in Figure 9. For values 
of L0/a less than 0.1, the results match closely. For values of L0/a greater than 1, the relative errors in the 
simplified analytical solution increase beyond 20%. 
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Assessment of the simplified solution #2 for a nearby boundary 
(Reproduced from Powrie and Preene, 1992; Figure 5) 

  

[7] 
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4. Flow into an excavation of any dimensions and distance to the recharge boundary 
 
To estimate the inflow to a rectangular excavation of any dimensions, Powrie and Preene (1992) proposed 
a general relation of the form: 
 
 

𝑄 = 𝐾𝐷 (𝐻 − ℎ𝑒𝑥)𝐺  
 
 
 

Here K is the horizontal hydraulic conductivity, D is the aquifer thickness, H is the head at the recharge 
boundary and hex is the head in the excavation. The parameter G is a “shape factor”, which may be 

interpreted as the dimensionless discharge. The shape factor G depends on the dimensions 
𝑎

𝑏
 and 

𝐿0

𝑎
 (or 

𝐿0

𝑏
 ). 

 
Powrie and Preene (1992) presented the following plot of G, based on the results of a finite-element 

analysis. The term ℎ𝑤
̅̅ ̅̅  corresponds to the head difference (H-hex). 

 
 

 
 
 

Shape factor G 
(Reproduced from Powrie and Preene, 1992) 
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To simplify estimation of values of G, the curves plotted in Powrie and Preene (1992) have been digitized 
and re-plotted in Figure 11. For values of a/b greater than about 10, the values of G approximate closely a 
single line. 
 
 

 
 

Shape factor G re-drafted 
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Assessment of the Powrie and Preene (1992) shape factor approach 

 
1. The values of Powrie and Preene’s shape factor G appear to reach asymptotic values for large values 

of a/b. Are the values of G for large a/b consistent with the simplified results for a “long” excavation? 
 

Recall that for a>>b, the flow into a “long” excavation is:  
 

𝑄 ≅ 2𝐾𝐷 (𝐻 − ℎ𝑒𝑥)
𝑎

𝐿0
 

 
Comparing this equation with the general form yields:  

 

𝐺𝑙𝑜𝑛𝑔 = 2
𝑎

𝐿0
 ≡ 2 (

1

(
𝐿0

𝑎 )
) 

 
In the next figure, Powrie and Preene’s shape factors for the general case are compared with the simplified 
plane-flow analysis for a long excavation. As shown in the figure, the shape factor G approaches the 
appropriate asymptotic value for relatively small values of L0/a. 
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Assessmennt of the asymptotic case of a “long” excavation 
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2. The values of the shape factor G also appear to converge for large values of L0/a. Are the values of G 
for large values of L0/a consistent with the simplified results for a “distant” boundary? As suggested in 
Figure 5, flow should become progressively more radial than linear as L0 gets much larger than a. 

 
 

 
 

  Near-radial flow for a “distant” boundary 
 
 

The solution for purely radial flow is: 
 

𝑄 = 2𝜋𝐾𝐷
(𝐻 − ℎ𝑒𝑥)

ln {
𝐿𝑜

𝑟𝑒
}

 

 
Powrie and Preene’s shape factors for the general case are compared with the simplified radial flow 
analysis from a distant boundary in the next figure. The radial flow calculations are made for the three 
different interpretations of the equivalent radius of the excavation.  

 
  

a 
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Assessment of the asymptotic case of a “distant” boundary 
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The results presented in Figure 14 that are calculated with the value of re based on an equal area are 
designated R1. For a/b = 50: 

 

𝑟𝑒_𝐴 = √
𝑎 ∙ (

𝑎
50)

𝜋
=

𝑎

12.533
= 0.0798 𝑎 

 
𝐿0

𝑟𝑒_𝐴
= 12.533 

𝐿0

𝑎
 

 
The results presented in the figure that are calculated with the value of re based on an equal perimeter 
are designated R2. For a/b = 50: 

 

𝑟𝑒_𝑃 =
𝑎 + (

𝑎
50)

𝜋
= 0.325 𝑎 

 
𝐿0

𝑟𝑒_𝑃
= 3.080 

𝐿0

𝑎
 

 
The results presented in the figure that are calculated with the value of re based on the formula of 
Mansur and Kaufman (1962) are designated R3. For a/b = 50: 

 

𝑟𝑒_𝑀𝐾 =
2

𝜋
√𝑎 ∙ (

𝑎

50
) = 0.090 𝑎 

 
𝐿0

𝑟𝑒_𝑀𝐾
= 11.107 

𝐿0

𝑎
 

 
The results plotted in the figure suggest that the asymptotic trends of Powrie and Preene’s shape 
factors are consistent with the general trends of the calculations with the simplified radial flow analyses. 
The closest match is obtained with the equivalent radius of the excavation estimated on the basis of the 
‘equal perimeter’ approach. 
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