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ABSTRACT 
 
Though popular in the geophysical modeling community, specification of spatially distributed parameters 
at a scale commensurate with prevailing geological heterogeneity has not been possible in common 
groundwater modeling practice. The principal reasons for this are (1) the high computational burden of 
obtaining derivatives necessary for parameter estimation, (2) the memory required to store the derivative 
and coefficient matrices generated in classical Levenberg-Marquardt methods, and (3) lack of experience 
within the groundwater modeling community with regularized inversion. The development of adjoint state 
derivatives calculation within MODFLOW-2000 removed the first of these roadblocks.  Efficient 
compression of the sensitivity matrix (Jacobian) within the inversion code PEST dramatically reduces 
memory requirements while increasing solution speed.  An independent regularization model allows for 
the specification of arbitrarily complex linear and non-linear regularization schemes. These developments 
have enabled investigation of the role of various regularization schemes within systems comprising many 
hundreds to thousands of parameters.  Some example regularization schemes are presented for use in 
different model calibration settings. The methods presented complement zone and pilot-point based 
parameterization schemes for complex 2- and 3-dimensional groundwater systems, due to the ability to 
accommodate the estimation of a large number of parameters in a numerically stable and geologically 
realistic manner. 
 

INTRODUCTION 
 
The inverse problem in groundwater modeling is generally ill-posed and non-unique.  The typical 
approach adopted for resolving non-uniqueness is parameter parsimony – parameterizing the model on 
the basis of a few zones or pilot points such that the number of observations (nobs) is considerably 
greater than the number of estimated parameters (npar).  Prior information such as preferred or expected 
parameter values may be specified to condition the problem. Defining parameter zones enforces the 
condition that all cells within a zone possess the same parameter value, e.g. conductivity. This is 
effectively a form of regularization employed to make the inverse problem tractable, and inversion results 
(parameter estimates) are conditional upon the zonation scheme.  Repercussions for model predictions of 
the chosen zonation scheme are difficult to analyze (Moore and Doherty, 2003).   
 
An alternative approach is to parameterize the model domain using many hundreds or thousands of 
parameters, and employ a regularization scheme adopted for the problem at hand. The regularization is 
chosen to stabilize the inverse problem by mitigating parameter correlation, enhance parameter 
sensitivity, and guarantee convergence to a unique solution (e.g. Engl and others, 1996).  This approach 
is not adopted in groundwater modeling partly due to the computational burden of obtaining the Jacobian 
and the memory required to store the derivative and coefficient matrices, and partly due to lack of 
research into appropriate regularization methods. The field of hydraulic tomography represents one 
implementation of regularized inversion in groundwater problems (e.g. Lui and others, 2002).   
 
The intention of this paper is to describe some recent advances in sensitivity analysis, parameter 
estimation, and the development of a regularization model that together enable the rapid inversion of 
highly parameterized models in a stable fashion.  These developments will enable the investigation of 
appropriate regularization schemes for a variety of geologic settings, and may promote analysis of model 
predictions under varying assumptions of geologic structure that are beyond inference in classical model 
calibration. 



REGULARIZED INVERSION 
 
Modified-Newton parameter estimation techniques aim to minimize an objective function defined as: 
 

Φm = (d - M(p))-1 Q1 (d - M(p))                (eq. 1) 
 

where p is a vector of order npar containing the model parameters; and d is a vector of order nobs 
containing measurements (observations); and M is a matrix with dimensions npar-columns and nobs-rows 
that describes the action of the model.  Matrix Q1 incorporates weights assigned to the measurement 
observations. Iterative solution of the inverse problem is designed to minimize Φm, termed the 
measurement objective function. A regularization objective function can be formed as: 
 

Φr = (e - R(p))-1 Q2 (e - R(p))          (eq. 2) 
 
where R is a regularization operator; e expresses a preferred condition; and Q2 incorporates weights 
assigned to the regularization observations. The regularized form of the inverse problem, sometimes 
referred to as penalized least squares (e.g. Engl and others, 1996), becomes 
 

Φg = Φm + µΦr                (eq. 3) 
 
where µ is a regularization weight multiplier.  Principal features of a good regularization scheme are 
stability and convergence to a unique solution.  Regularization relationships typically range from linear to 
quadratic, yielding smooth solutions (e.g. Vogel, 1997).  Though this provides a stable solution, 
smoothness is not appropriate for all settings. Alternative schemes developed in the geophysical 
community for different geologic settings include: 
 

• Focused regularization (e.g. Portniaguine and Zhdanov, 1999) 
• Directionally varying and spatially varying regularization (e.g. Pain and others, 2002) 
• Iteratively re-weighted regularization (e.g. Portniaguine and Zhdanov, 2002) 

 
OBTAINING DERIVATIVES 

 
Sensitivities necessary for parameter estimation can be obtained in three ways: 
 

1) Finite difference or perturbation sensitivities, obtained by perturbing each parameter in turn and 
calculating, by finite differences, the sensitivity of each observation to the parameter perturbation.  
This requires npar+1 runs to obtain the forward or backward derivatives, and (npar*2)+1 runs for 
more accurate central derivatives (Doherty, 2002). 

2) Solution by the sensitivity equation method, as employed in MODFLOW-2000 (Hill and others, 
2000).  This requires npar+1 of the finite difference equations, but typically provides more 
accurate derivatives than perturbation methods (Hill and others, 2000). 

3) Adjoint state sensitivities, obtained by perturbing each observation in turn and calculating the 
derivative of the equation of state with respect to each parameter.  This requires nobs+1 runs to 
obtain the sensitivities (e.g. Sun, 1994). 

 
For problems characterized by npar>>nobs, finite difference and sensitivity equation methods are 
computationally prohibitive, and the adjoint state is required.  The adjoint has been described in the 
groundwater literature (e.g. Townley and Wilson, 1985; Sun, 1994), but has not seen wide use.  Until 
recently, the most accessible application of the adjoint within the groundwater community was 
implemented in MODFLOWP (Hill, 1992) where it was employed to calculate derivatives with respect to 
the total objective function.  Adjoint sensitivity capabilities have recently been added to the MODFLOW-
2000 Observation and Sensitivity Processes (Clemo and others, 2003; Harbaugh and others, 2000; Hill 
and others, 2001).  The new adjoint sensitivity code calculates the sensitivity of each observation with 
respect to each parameter, allowing construction of the Jacobian matrix.  Tests using highly 
parameterized systems indicate better-than order-of-magnitude speed up times with respect to 
sensitivities obtained by finite-differences or sensitivity equations.   



MEMORY, STORAGE AND SOLUTION OF THE MATRIX EQUATIONS 
 
Regularized inversion typically involves determining many hundreds or thousands of relationships 
between model parameters.  Regularized inversion requires calculation of derivatives of these 
relationships, comprising rows of matrix M in equation 1. Whereas rows of the derivatives matrix 
pertaining to the sensitivity of observations with respect to parameters are full, rows pertaining to items of 
regularization may contain only a very small number (often one) of non-zero entries, since regularization 

generally relates a single parameter to second parameter or to 
a preferred condition.  Hence, the entire derivatives matrix is 
very sparse.  Generalized matrix compression utilities may not 
take full advantage of this sparsity, since for different cases it 
may not conform to generalized sparse-matrix structures.  The 
authors developed a custom compression for file 
reading/writing based on the premise that the regularization 
model prepares all entries for derivatives pertaining to 
regularization items. Only non-zero entries are read/written.  

The structure for file reading/writing is shown conceptually in figure 1.  Custom file retrieval and matrix 
manipulation routines added to PEST access entries in the compressed Jacobian as necessary for 
solving the matrix equations. Tests conducted on highly parameterized systems indicate hard-disc and 
RAM savings of over 98 percent. Modifications of the solver routine for solving large-parameter systems 
reduced computational time for solving the large normal matrices by about one order of magnitude. 

 
REGULARIZATION MODEL 

 
The regularization model accomplishes three principal objectives, 
namely: 
 

1) Calculates linear and (or) non-linear regularization items 
of arbitrary complexity, specified by the modeler. 

2) Compiles the adjoint-state calculated sensitivities together 
with analytically determined derivatives of the 
regularization items into a single, highly compressed 
derivatives matrix. 

3) Provides the interface between the adjoint sensitivity 
program and PEST. 

 
Combining the three codes into a single program would save file 
reading and writing. However this represents a very small portion 
of the total execution time, and this savings would be at the 
expense of the enormous flexibility offered by the current 
configuration. Each step of the combined process, shown 
schematically in figure 2, is (largely) model-independent, but 
offers rapid solution of its component of the inversion problem.   

 
 

 
TWO EXAMPLE REGULARIZATION SCHEMES 

 
Anisotropic regularization for a smoothly varying field 
 
This exercise is intended to demonstrate the impact of regularization anisotropy on the correlation of an 
estimated field with a true (synthetic) field, and on the prediction of advective transport velocities.  A 
synthetic model domain was constructed comprising 1 layer, 20 rows, and 20 columns. Hydraulic 
conductivity was assigned to the domain using Fieldgen (Doherty, 2002), a geostatistical field generator 
with an anisotropy of 1.5 in the azimuth 060 degrees. A small resistive structure mimicking a fault was 
superimposed with an orientation of 045 degrees.  Twenty synthetic, randomly located water level 
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observation locations were added.  The time-of-travel for 
a particle released within the domain to reach the down 
gradient boundary was recorded for each simulation.  The 
true time-of-travel is 42 days. All simulations achieved 
sum-of-squared-residuals under 10e-5 ft2.  The 
regularization adopted was a simple 8-node logarithmic 
differencing scheme, with an arbitrary anisotropy direction 
and magnitude.  The regularized inversion problem 
comprises 400 parameters, 20 observations, and 3200 
regularization equations, resulting in 14,400 non-zero 
entries in the derivatives matrix.  Without compression, 
this would require approximately 20MB storage (double 
precision); under compression 350KB are required, or 
less than 2 percent. Execution time for the full inversion is 
less than 2 minutes on a 1.7GHz, 512 MB RAM laptop. 
 

Observations and conclusions 
 
This exercise demonstrates the use of appropriate regularization anisotropy in a smoothly varying field.  
Figure 3 indicates that the correlation of the estimated field with the true field and the estimated exit-time 
of the particle are improved when the direction of regularization anisotropy approaches the true direction 
of anisotropy.  Exercises such as this may support or comprise a component of more formal approaches 
to regularization scheme selection such as generalized cross-validation (e.g., Yao and Roberts, 1999). 
 
Identification of a categorical (zone) field using continuous regularization 
 
The object of this exercise is to compare some regularization schemes for identifying areas of equivalent 
hydraulic properties (zones).  A synthetic model comprising 1 layer, 40 rows, and 30 columns is shown in 
figure 4. A uniform transmissivity of 100 ft2/d is assigned to approximately 90% of the domain. A small 
area of transmissivity 2 ft2/d is assigned in the middle of the domain. Fifty synthetic, randomly located 
water level observation locations were added.  Three regularization schemes were adopted (a) maximal 
smoothness, (b) focusing regularization (maximal smoothness with a power penalty), and (c) a two-point 
regularization scheme.  The two-point scheme forces parameters to specified fixed bounds using a non-
linear power function that tends to zero at preferred values.  (b) and (c) are non-linear and could not be 
described in the form of linear prior-information. All simulations achieved sum-of-squared-residuals under 
10e-3 ft2. The regularized inversion problem comprises 1200 parameters, 50 observations, and 12,000 
regularization equations, resulting in 81,600 non-zero entries in the sensitivity matrix.  Without 
compression, this would require approximately 230MB storage (double precision); under compression 
2MB are required, less than 1 percent.  Execution time for the full inversion ranged from 30 minutes to 
120 minutes on a 1.7GHz, 512 MB RAM laptop. 

 

Figure 3: Time of travel (squares) and 
correlation with true field (triangles) 
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Figure 4: (a) True field, (b) maximally smooth, (c) focused, and (d) two-point simulated fields. 



Observations and conclusions 
 
The maximal-smoothness scheme identifies the general area of lower transmissivity, but spreads the 
anomaly throughout the domain.  Oscillatory artifacts of the scheme related to Gibbs phenomenon 
develop in the vicinity of the sharp interfaces (e.g. Hobro and others, 2003). The power regularization 
scheme performs better at targeting the location of the anomaly.  The two-point scheme shows promise 
for identifying sharp boundaries. Both non-linear schemes perform better than the linear smoothing. 
 

CONCLUSIONS 
 
The suite of programs described enables rapid regularized inversion of highly parameterized MODFLOW 
models. This will facilitate an assessment of the most appropriate regularization scheme(s) for a range of 
settings. Schemes based on smoothness constraints may not be suitable in many geological contexts. 
Early efforts at identifying discrete areas of equivalent properties (zones) using continuous regularization 
methods show some promise, but further development of appropriate regularization schemes is 
warranted.  Extending this work to explicitly include derivates with respect to advective or reactive 
transport will yield valuable additional sensitivity information that was absent from this study. 
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