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[1] A hybrid approach to the regularized inversion of highly parameterized environmental
models is described. The method is based on constructing a highly parameterized base
model, calculating base parameter sensitivities, and decomposing the base parameter
normal matrix into eigenvectors representing principal orthogonal directions in parameter
space. The decomposition is used to construct super parameters. Super parameters are
factors by which principal eigenvectors of the base parameter normal matrix are multiplied
in order to minimize a composite least squares objective function. These eigenvectors
define orthogonal axes of a parameter subspace for which information is available from
the calibration data. The coordinates of the solution are sought within this subspace. Super
parameters are estimated using a regularized nonlinear Gauss-Marquardt-Levenberg
scheme. Though super parameters are estimated, Tikhonov regularization constraints
are imposed on base parameters. Tikhonov regularization mitigates over fitting and
promotes the estimation of reasonable base parameters. Use of a large number of base
parameters enables the inversion process to be receptive to the information content
of the calibration data, including aspects pertaining to small-scale parameter
variations. Because the number of super parameters sustainable by the calibration data
may be far less than the number of base parameters used to define the original
problem, the computational burden for solution of the inverse problem is reduced. The
hybrid methodology is described and applied to a simple synthetic groundwater flow
model. It is then applied to a real-world groundwater flow and contaminant
transport model. The approach and programs described are applicable to a range of
modeling disciplines.

Citation: Tonkin, M. J., and J. Doherty (2005), A hybrid regularized inversion methodology for highly parameterized environmental

models, Water Resour. Res., 41, W10412, doi:10.1029/2005WR003995.

1. Introduction

[2] The inverse problem in groundwater modeling is
generally ill posed and nonunique [Carrera and Neuman,
1986]. Parsimony is often employed to achieve a unique
solution. This typically involves parameterizing the model
with zones of piecewise constancy such that the number
of parameters (n) is small and the number of observations
(m) is larger than n. This makes the inverse problem
numerically tractable but often results in high levels of
model-to-measurement misfit. Further, where parameter
zones are based on arbitrary geometry that does not
accurately reflect geology, levels of misfit reflect the
parameterization scheme, not measurement noise. This
occurs, at least in part, because this approach precludes
the inverse process from inferring heterogeneity where
calibration data supports its inclusion. This can result in
high variance for predictions that are sensitive to that

detail [Moore and Doherty, 2005]. Additional sources of
error, such as structural inaccuracy, are outside the scope
of this study.
[3] An alternative approach is to parameterize the

model with more parameters than are uniquely determin-
able from the data [Jackson, 1972]. This can enable
variations in spatially distributed parameters to be spec-
ified at a scale commensurate with field-scale heteroge-
neity. However, this may lead to an under-determined
problem, the solution to which is nonunique. In these
circumstances regularization can be employed to stabilize
the inversion of the under-determined problem and
guarantee convergence to a unique solution [Tikhonov
and Arsenin, 1977; Engl et al., 1996]. Though regular-
ization can be implemented by a variety of means, a
regularization parameter, m, is employed that governs the
strength with which regularization constraints are im-
posed. Weak imposition of regularization constraints
can result in close agreement between model outputs
and observations at the cost of parameter reasonableness
and numerical stability. Strong imposition of regulariza-
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tion constraints can result in greater numerical stability
but a decreased ability of the calibration process to
identify small-scale parameter variations [Engl et al.,
1996; Haber, 1997; Vogel, 2002].
[4] Two forms of regularization are described in this

study. These are as follows.
[5] 1. The first is Tikhonov regularization, where the

normal matrix is amended by the addition of equations
relating parameters to each other or to preferred values.
Here m is a multiplier for the regularization equation weights
[Tikhonov and Arsenin, 1977; Vogel, 2002]. In this formu-
lation a preferred condition is assumed to prevail from
which deviations occur to the extent that they enable
model-to-measurement misfit to be reduced to a level
determined by the modeler.
[6] 2. The second is truncated singular value decompo-

sition (TSVD) where the inverse problem is truncated to a
subspace of the full problem [Lawson and Hanson, 1995;
Weiss and Smith, 1998]. Here m is a filter that excludes
eigenvectors of the normal matrix that do not contribute to
objective function minimization.
[7] Regularized inversion is common in geophysical

data interpretation where efficient methods have been
applied to obtaining parameter sensitivities, such as the
adjoint state [Tsourlos and Ogilvy, 1999], and solving the
large matrix equations that result from estimating a large
number of parameters, such as conjugate gradients
[Mackie and Madden, 1993; Haber et al., 2000] and
matrix factorizations [Portniaguine, 1999; Portniaguine
and Zhdanov, 2002]. In groundwater flow-and-transport
modeling difficulties are encountered in undertaking
regularized inversion that do not exist to the same extent
in geophysical data interpretation. These include the
following.
[8] 1. Model complexity and nonlinearity lead to forward

simulation times of minutes, hours or greater. This creates a
high computational burden for obtaining the sensitivities of
more than just a few parameters.
[9] 2. Sensitivity calculations are not typically embedded

in the simulation code hence obtaining parameter sensitiv-
ities is an additional computational step.
[10] 3. Groundwater flow and contaminant transport

models comprise a wide variety of parameter types. Each
of these parameter types may be best represented using
different regularization strategies.
[11] For these reasons a priori parsimony, such as is

provided by a small number of zones, is often used to
parameterize groundwater models. Yet, a priori parsimony
can inhibit the calibration process from extracting infor-
mation from observations that pertains to the parameters
on which model predictions depend. For example, where
a model is used to predict contaminant movement,
predictions may depend upon aquifer heterogeneity
[Moore and Doherty, 2005]. This is particularly important
where concentration data are included in the calibration
data set since groundwater elevation data may contain
little information on this heterogeneity [Franssen et al.,
2003].
[12] Regularized inversion of a highly parameterized

model has greater potential to infer detail from a calibration
data set. When Tikhonov regularization is employed this
can be accomplished while ensuring that a preferred condi-

tion prevails. However the advantages of using a large
number of parameters come at a cost of high calibration
times and a tendency toward numerical instability. An ideal
calibration methodology would combine the rapid inversion
times and numerical stability that result from employing a
small number of parameters, with the potential to simulate
and infer small-scale parameter variations that comes from
using highly parameterized models.
[13] This paper introduces a hybrid approach to the

regularized inversion of highly parameterized models and
demonstrates the approach using synthetic and real-world
groundwater models. Underpinning the approach is the
combination of subspace and Tikhonov regularization
methods. The paper is organized as follows: an overview
of nonlinear least squares minimization is followed by a
description of the regularization methods employed in the
hybrid approach. The hybrid approach is described, and
applied to a simple synthetic groundwater flow model.
The approach is then applied to a real-world groundwater
flow-and-transport model designed to support the opera-
tion of a pump-and-treat (PT) groundwater remedy. The
bases of decisions intrinsic to the hybrid approach are
discussed, including the selection of regularization
parameters.

2. Nonlinear Least Squares

[14] The equations presented below assume that
model outputs are a linear function of the model
parameters. In fact, environmental models are rarely
linear. However, these equations form the basis of the
iterative gradient-based parameter estimation process that
underpins traditional least squares minimization and the
hybrid methodology.
[15] For a linear model, the relationship between the n

model parameters, p, and the m model outputs for which
there are corresponding field observations, y, can be repre-
sented by the matrix equation:

Xp ¼ y ð1Þ

where X is an m � n matrix of independent variables that
for linear problems is equivalent to the Jacobian matrix,
describing the forward action of the model. X contains the
sensitivity of each simulated equivalent of each observation
with respect to each parameter. X can be constructed
using perturbation sensitivities, requiring n + 1 forward
model executions; sensitivity equations, requiring the solu-
tion of n + 1 sensitivity equations; or adjoint sensitivities,
requiring the solution of m + 1 adjoint sensitivity equations
[Townley and Wilson, 1985; Carrera et al., 1990; Sun,
1994]. Where n > m, adjoint methods require the fewest
model runs to form X. Further, adjoint and sensitivity
equation sensitivities may be more accurate than perturba-
tion sensitivities [Sun, 1994; Hill, 1998]. However, pertur-
bation sensitivities can be obtained for any model because
no changes are required to the model code to implement
their calculation. Perturbation sensitivities are used in the
hybrid approach. Because the hybrid approach reduces the
dimensionality of the inverse problem, i.e., the ratio of n to
m, the computational advantages of adjoint methods may
often be eliminated.
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[16] The hybrid regularization approach is founded upon
traditional weighted least squares (L2 norm) minimization
of a model-to-measurement misfit objective function de-
fined as

Fm ¼ d� X p
� �� �t

Qm d� X p
� �� �

ð2Þ

where p is an n-row vector of current parameter values, d is
an m-row vector containing measurements (observations),
and Qm is a square m � m weight matrix, ideally
proportional to the inverse of the covariance matrix of
observation errors [Bard, 1974; Hill, 1998]. Other objective
functions exist, such as the L1 norm [Xiang et al., 1993] and
Lp norm [Sun, 1994]. However, the L2 norm has desirable
qualities including the ability to assess parameter and
predictive uncertainty [Bard, 1974; Cooley, 2004].
[17] For a linear model Fm of (2) is minimized when

p ¼ XtQmXð Þ�1
XtQmd ð3aÞ

In linear models where Fm is quadratic minimization of (2)
may be achieved in a single step. In nonlinear models p
cannot be calculated directly from d in this fashion. Rather a
parameter upgrade vector, Dp, is calculated using the
equation:

Dp ¼ XtQmXð Þ�1
XtQmr ð3bÞ

where r lists the residuals for the current parameter set.
Repeated linearizations are required, necessitating repeated
construction of X in an iterative process that converges to an
optimal parameter set p. In highly parameterized models
construction of X is the most computationally costly aspect
of the inverse process [Carrera et al., 1990; Sun, 1994].
[18] Use of (3b) is effective for over-determined systems

comprising a small number of parameters. However, if
XtQmX is rank deficient or (near) singular, i.e., at least
one of its eigenvalues is (near) zero, it cannot be inverted.
Eigenvectors corresponding to the (near) zero eigenvalues
of XtQmX span parameter combinations that do not con-
tribute to minimizing (2) and are not estimable using the
available observations. In this paper the term calibration
null space is used to describe the subspace that is spanned
by eigenvectors that do not contribute to minimizing (2), in
distinction from the strictly defined term model null space,
which is the space for which Xp = 0. The calibration null
space includes the model null space in addition to the space
spanned by eigenvectors corresponding to low eigenvalues,
since inclusion of these eigenvectors in the solution may
amplify noise [Lines and Treitel, 1984; Lawson and
Hanson, 1995; Aster et al., 2005]. The calibration solution
space is the complement of the calibration null space.
[19] The likelihood of encountering a (near) singular

matrix increases as n increases. XtQmX may be rescued
from singularity using the Levenberg-Marquardt parameter,
l [Levenberg, 1944; Lines and Treitel, 1984]. In fact l is
often employed irrespective of whether the inverse problem
is ill conditioned since its use enables the parameter upgrade
vector to be determined along a continuum between the
Gauss-Newton and steepest descent methods [Marquardt,
1963]. Despite the ability of l to contribute stability to an

otherwise unstable inversion, robust parameter estimation
requires regularization. Tikhonov regularization, which has
seen increasing application in groundwater modeling in
recent years, is now described.

3. Tikhonov Regularization

[20] Tikhonov regularization is founded upon supple-
menting the observation data set with information pertain-
ing directly to parameters. This takes the form of a series of
regularization equations, the weights for which are deter-
mined during the inverse process. Regularization equations
are typically based upon differencing schemes, such as the
difference of a parameter value from a preferred value, or
the difference in value between parameters [Ory and Pratt,
1995; Liu and Ball, 1999]. Example regularization equa-
tions are described by Doherty [2003] and may be similar in
form to prior information equations described by Cooley
[1982]. The measure of misfit pertaining to the regulariza-
tion equations can be described by a regularization objective
function that is similar in form to the measurement misfit
objective function defined by (2), i.e.,

Fr ¼ e� R p
� �� �t

Qr e� R p
� �� �

ð4Þ

where R is a regularization operator that encapsulates the
regularization equations; e expresses a preferred condition;
and Qr incorporates (relative) weights assigned to the
regularization equations.
[21] Inclusion of Tikhonov regularization in the inverse

problem results in an approach referred to as penalized least
squares [Engl et al., 1996] in which a composite objective
function is defined as

Fg ¼ Fm þ mTFr ð5Þ

where mT is the Tikhonov regularization parameter and Fg is
the composite or global objective function, i.e., the
summation of the measurement objective function described
by (2) and the regularization objective function described by
(4). mT is calculated during the inversion process such that a
target level of model-to-measurement fit is achieved. The
target measurement objective function, Ft, is supplied by
the modeler in accordance with the anticipated magnitude of
noise in the calibration data. When formulated with a target
measurement objective function, the inversion can be
viewed as a constrained minimization in which mT performs
a similar role to that of a Lagrange multiplier [Haber, 1997].
[22] Neuman and Yakowitz [1979] formed a composite

least squares objective function in terms of log transmissiv-
ity, using a parameter plausibility criterion that is of similar
form to (5). They recognized that information on aquifer
transmissivity is typically insufficient to specify an optimal
value (or weight) for prior information, and solved a series
of generalized least squares problems to estimate it.
Jacobson [1985] adopted this approach for incorporating
prior information determined from an analysis of aquifer
test data, reducing the condition number of the inverse
problem and enabling estimation of a fairly large number
of parameters using a smaller number of observations. The
approach of Neuman and Yakowitz [1979] and Jacobson
[1985] was not developed as a constrained minimization,
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and was demonstrated only for the estimation of aquifer
transmissivity.
[23] Tikhonov regularization can be implemented for all

parameter types encountered in groundwater models.
Though commonly employed for spatially varying param-
eters Tikhonov regularization has been employed in the
reconstruction of a time-varying contaminant source [Liu
and Ball, 1999]. Tikhonov relationships can be linear or
nonlinear, and are often designed to yield smooth parameter
fields. Smoothness is not always desirable [Vogel, 1997;
Portniaguine, 1999] but has been demonstrated to produce
numerical stability and conceptually agreeable results in
groundwater models [Liu and Ball, 1999; Doherty, 2003].
[24] Because Tikhonov regularization enables the speci-

fication of an acceptable misfit and a preferred condition in
the inverse problem definition, its inclusion can lead to
estimated parameter fields that are in accordance with a
prior conceptualization. However, inversion based solely on
Tikhonov regularization is not unconditionally stable. This
occurs because it is difficult to specify regularization con-
straints that are enforced strongly where the information
content of the calibration data is low, and less strongly
where the information content of the calibration data is high.
This is particularly true for nonlinear models that include a
variety of parameter types. A regularization method that is
unconditionally stable, Truncated Singular Value Decom-
position, is now described.

4. Truncated Singular Value Decomposition

[25] Singular value decomposition (SVD) is an alterna-
tive approach to full matrix inversion for determining Dp
from XtQmX [Lawson and Hanson, 1995; Anderson et al.,
1999]. SVD decomposes an arbitrary matrix A into:

A ¼ UBVt ð6Þ

where U and V contain the left and right eigenvectors of A,
respectively [Lawson and Hanson, 1995]. In the general
case the matrix that undergoes decomposition need not
be square. In the special case of the square symmetric
matrix XtQmX, B is diagonal and lists the n singular
values or eigenvalues of XtQmX. In addition U = V and
the n column vectors of matrix V are the eigenvectors of
XtQmX. Thus

XtQmX ¼ VBVt ð7Þ

Because XtQmX is symmetric positive semidefinite its
eigenvectors are orthogonal, hence [Lawson and Hanson,
1995; Seber and Wild, 1989]:

Vt ¼ V�1 ð8Þ

Combining (3b) and (7), and noting that B is diagonal and
that the inverse of a product of two matrices (YZ)�1 can be
expressed as Z�1Y�1, it is evident that (VBV�1)�1 =
VB�1Vt and that the parameter upgrade vector Dp can be
determined from SVD of XtQmX using

Dp ¼ VB�1VtXtQmr ð9Þ

One evident advantage of solving for Dp using (9) rather
than (3b) is that SVD obviates the task of inverting XtQmX
which can be difficult where XtQmX is (near) singular.
[26] The full complement of eigenvectors of XtQmX is a

set of mutually orthogonal (linearly independent) directions
in parameter space. When using SVD and (9) to solve for
Dp the parameter upgrade vector is proportional to the
weighted sum of these eigenvectors. Typically, the eigen-
vectors V are normalized, i.e., VtV = 1.0, and the
corresponding eigenvalues B are proportional to the steep-
ness (L2 norm) of the slope of the objective function Fm in
the direction of the corresponding eigenvector [Shewchuk,
1994].
[27] For a square positive semidefinite n � n matrix such

as XtQmX there exist n real-valued eigenvalues. In general a
small number of eigenvalues are dominant, corresponding
to a small number of eigenvectors representing dominant
directions in parameter space. The remaining eigenvalues
are vanishingly small and correspond to eigenvectors that
span the calibration null space. Projections of the solution
vector onto these eigenvectors may be dominated by noise
and lead to inversion instability because inversion of B in
(9) amplifies any noise present [Lawson and Hanson, 1995,
p. 198; Aster et al., 2005, p65]. Stable inversion is achiev-
able where parameter combinations belonging to the cali-
bration solution space are estimated, and parameter
combinations corresponding to the calibration null space
are eliminated from the inverse process.
[28] Truncated singular value decomposition (TSVD) is a

mechanism for determining Dp from the k most dominant
eigenvectors, where k < n is a subset of the full complement
of eigenvectors. Truncation is accomplished using a regu-
larization parameter, mS. Diagonal entries of B beyond the
truncation limit established by mS are assigned a value of
zero [Lawson and Hanson, 1995; Aster et al., 2005], i.e.,

B ¼ B1 0

0 B2

� �
ð10Þ

where B2 contains eigenvalues set to zero. The dimensions
of the calibration solution space is determined by specifying
mS = k, corresponding to the k largest eigenvalues; or by
specifying mS as the ratio of the lowest to highest eigenvalue
that is to be retained. In the latter instance the dimensions of
the subspace are unknown a priori and may vary through the
parameter estimation process. In either circumstance the n-
dimensional problem is transformed to a k-dimensional
approximation.
[29] TSVD contrasts with a priori parsimony since the

subspace determined from TSVD of XtQmX is deter-
mined from the information content of the observations,
whereas the subspace constructed from an a prior parsi-
mony strategy is not. A variety of approaches exist for
selecting mS. Popular among these is plotting the singular
value spectrum, i.e., the entries in B, from which the
subset of eigenvectors that dominates the problem is
typically evident [Lawson and Hanson, 1995; Haber,
1997; Aster et al., 2005]. As described by Moore and
Doherty [2005], it can also be selected in such a manner
as to minimize the error variance of a particular model
prediction. Selection of mS in the hybrid regularization
methodology is discussed later.
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[30] The application of TSVD for model calibration is
accompanied by three disadvantages: (1) Stability is not
accompanied by accelerated solution to the inverse problem
since it does nothing to reduce the burden of iteratively
recalculating X. (2) Using TSVD to improve the goodness
of fit described by (2), the only mechanism for preventing
over fitting is the selection of mS [Aster et al., 2005], yet
varying mS offers no guarantees for the reasonableness of
estimated parameters. (3) Unlike Tikhonov methods there is
no mechanism for setting a target measurement objective
function or constraining the inversion in an effort to obtain
reasonable estimated parameters and cease the inverse
process. The method presented in this work addresses these
issues.

5. Orthogonal Directions and Super Parameters

[31] The concept of super parameters is founded upon
retaining the k eigenvectors obtained from TSVD of
XtQmX. As stated previously, solution of (9) using TSVD
can be interpreted as a weighted sum of the k orthogonal
eigenvectors retained from the truncated decomposition.
This can be illustrated as

Dp ¼ DVp
S

ð11Þ

where DpS provides the projection of the solution vector Dp
in the direction of the eigenvectors V. Solution of the
inverse problem in this form requires that DpS is sought
until pS is identified. It is possible to define and estimate pS
as parameters, referred to here as super parameters. Together
with the eigenvectors obtained from TSVD of XtQmX,
super parameters constitute the basis for reparameterizing
the inverse problem.
[32] The use of super parameters is related to TSVD

since the n-dimensional inverse problem is transformed into
a k-dimensional problem. However, when using super

parameters, the solution subspace is defined once through
the initial TSVD of XtQmX, and is constant throughout the
inversion process. The reformulated problem is solved as a
classical least squares problem but with parameters rede-
fined as super parameters. Nonlinear inversion proceeds by
perturbing super parameters to construct an m� k sensitivity
matrix, XS, listing the sensitivity of each simulated equiva-
lent of each observation with respect to each super param-
eter. The upgrade vector for the super parameters, DpS, can
be determined using the same approach as (3b), i.e.,

Dp
S
¼ Xt

SQmXS

� ��1
Xt

SQmr ð12Þ

When each super parameter is perturbed or upgraded, base
parameters are perturbed or upgraded in the ratio in which
they occur in the corresponding eigenvector V (equation
(11)). Solving the reformulated problem provides the coor-
dinates of the solution within a parameter subspace for
which information is available from the calibration data.
Since k executions of the model are required to construct XS,
when k � n the computational burden of each linearization
in the inversion is reduced by the ratio k:n. Hence the
number of base parameters can be large in an effort to
capture the information content of the calibration data.
Making n large gives the hybrid method flexibility in
identifying informative directions in parameter space. How-
ever, the rank of the reformulated inverse problem is only as
large as k and beyond a certain value of n this is unlikely to
grow.
[33] Jacobson [1985] analyzed the singular value spec-

trum of XtQX and, where this spectrum suggested that use
of prior information alone was insufficient to stabilize the
problem, proposed reparameterizing aquifer transmissivity
by (1) combining parameter zones or (2) constructing
surrogate parameters. Surrogate parameters were con-
structed on the basis of the eigenvectors of XtQX in a
manner similar to super parameters. However, Jacobson
[1985] combined prior estimates on the log transmissivity of
parameter zones to form prior estimates on the surrogate
parameters. Further, Jacobson [1985] estimated a parameter
plausibility scalar multiplier using stepwise residual and
maximum likelihood analyses, rather than formulate the
problem as a constrained minimization. Finally, the ap-
proach of Jacobson [1985] was demonstrated for estimation
of aquifer transmissivity, whereas the approach described
here is applicable to all parameter types.
[34] Reducing the dimensionality of the problem using

super parameters stabilizes the inverse process and increases
computational efficiency. This mitigates one drawback of
traditional TSVD. However, two drawbacks remain, namely
there is no guarantee of parameter reasonableness, and no
mechanism for preventing over fitting. These are the prin-
cipal strengths of the Tikhonov method.

6. Hybrid Regularization Methodology

[35] The hybrid methodology combines TSVD and
Tikhonov regularization in an effort to rapidly invert un-
der-determined systems in a stable manner and produce
base parameter fields that are acceptable to the modeler. The
following narrative describes the stepwise application of the
hybrid methodology (Figure 1).

Figure 1. Schematic of the hybrid regularization process.
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[36] 1. Construct and calibrate over-determined (parsimo-
nious) model.
[37] 2. Construct highly parameterized model comprising

n base parameters and m observations, where n may be
greater than m. This is referred to as the base model
parameterization. Initial values for base parameters are
identified from the solution of the over-determined
problem.
[38] 3. Calculate X for base model parameters and form

XtQmX. X is only constructed once. Perturbations, sensi-
tivity equations or adjoint sensitivities can be used.
[39] 4. Decompose XtQmX into eigenvectors and their

corresponding eigenvalues. Construct k super parameters,
factors by which the dominant eigenvectors of XtQmX are
multiplied to minimize the measurement objective function
of equation (2).
[40] 5. Design Tikhonov regularization scheme(s) for

base parameters, such as a scheme that preferentially
minimizes the difference between closely spaced parameters
of the same type. Identify a target objective function for the
constrained minimization.
[41] 6. Estimate parameters by perturbing super parame-

ters. The inversion is nonlinear since super parameter
sensitivities are recalculated and super parameters are
upgraded iteratively. Since Tikhonov regularization is
assigned to base parameters and a target measurement
objective function is specified, a regularization parameter
is recalculated each iteration of the super parameter process.
[42] Methods for determining the truncation level for

eigenvalues of XtQmX, and hence identifying the number
of super parameters to use in the reformulated problem, are
not rigid. This is consistent with the findings of Jacobson
[1985], who concluded from SVD analysis of XtQX that
determining the truncation limit is not straightforward but
may be accomplished from empirical analysis of the singu-
lar value spectrum.
[43] The maximum number of super parameters is equiv-

alent to n, i.e., the number of base parameters. Defining n
super parameters would be equivalent to retaining all
eigenvectors of XtQmX, and no computational gains would
be made. The truncation upper limit could also be set as the
number of eigenvalues that exhibit a ratio of greater than
1.0 � 10�6 to the largest eigenvalue, since our experience
suggests this approximates the level of noise encountered
in perturbation sensitivities. If the singular value spectrum
is plotted it may appear that a small subset of the
corresponding eigenvectors is sufficient to define the
calibration solution space [Aster et al., 2005; Haber,
1997]. However, there is no guarantee at the outset of
the inverse process that that Ft can be achieved, though
this does not typically deteriorate the Tikhonov scheme
from ensuring reasonable parameters.
[44] In practice it is beneficial to select a number of super

parameters that is greater than the minimum necessary to
achieve Ft. Therefore we define a slightly ill-posed prob-
lem. Using more super parameters than are needed for
unique parameter estimation at Ft allows the Tiknonov
regularization flexibility in identifying reasonable parame-
ters. If the resulting fit is unsatisfactory k may be increased
and the super parameter inversion recommenced without
recalculating and decomposing XtQmX. Alternatively, since
super parameters are determined from TSVD of XtQmX,

i.e., before Tikhonov constraints are included, alternative
Tikhonov schemes can be implemented without recalculat-
ing and decomposing XtQmX.
[45] In a nonlinear model X changes as the inversion

progresses, however it is desirable that the super parameters,
i.e., orthogonal directions determined through TSVD of
XtQmX, span the estimable parameter space throughout
the inversion in spite of changing X. In an effort to assure
this, we define the base parameters used for calculating X
on the basis of ‘lumped’ or averaged parameters obtained
though solving a prior over-determined (parsimonious)
inverse problem (step 1 above). This strategy is described
real-world example below. If the inversion exhibits unsat-
isfactory convergence or fails to attain Ft, it may be
indicative that the super parameters do not span the esti-
mable subspace, or more seriously that the model suffers
from pervasive structural or conceptual errors. The first of
these possible causes can be evaluated by recalculating and
decomposing XtQmX using the current base parameters and
recommencing the super parameter estimation process,
whereas the second requires that fundamental model
assumptions be revisited.

7. Synthetic Case Study

[46] The hybrid methodology is first illustrated using a
synthetic groundwater model based on that described by
C. Moore and J. E. Doherty (The cost of uniqueness in
groundwater model calibration, submitted to Advances in
Water Resources, 2005, hereinafter referred to as Moore and
Doherty, submitted manuscript, 2005). Figure 2a shows a
regular finite difference domain with dimensions 500 m by
800 m, discretized using 50 columns and 80 rows. Bound-
aries are described by an upgradient Neumann (specified
flux) condition of 0.1 m3/d/m and downgradient Dirichlet
(specified head) condition equivalent to 0.0 m. The aquifer
is assumed confined. The only parameter considered for
estimation is hydraulic conductivity. For purposes of pa-
rameter estimation the spatial distribution of hydraulic
conductivity is represented using 104 pilot points placed
throughout the model domain (Figure 2a) (see Certes and de
Marsily [1991] and RamaRao et al. [1995, and references
therein] for a discussion of pilot points as a parameterization
device). The use of pilot points as a parameterization
scheme in Tikhonov regularized inversion is described by
Doherty [2003].
[47] The ‘‘true’’ hydraulic conductivity was generated by

a three-step process.
[48] 1. A multi-Gaussian hydraulic conductivity field

with an average log conductivity of 0.0 m/d (corresponding
to a hydraulic conductivity of 1.0 m/d) was generated based
on a log exponential variogram described by:

g hð Þ ¼ b 1� e�ah
� �

ð13Þ

where the sill (b) equals 0.2 m2 and the range coefficient
(a) equals 200 m; and h is the separation (lag) distance
(Figure 2a) [Deutsch and Journel, 1992].
[49] 2. The hydraulic conductivity at each pilot point was

identified using bilinear interpolation from this multi-
Gaussian field.
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[50] 3. Interpolation of these values to the model nodes
from the pilot points was undertaken using kriging with the
variogram described by (13) (Figure 2b).
[51] Constructing the true hydraulic conductivity field in

this manner ensures that the parameter field respects the
defining variogram and that there are ‘‘true values’’ for the
pilot point parameters. Steady state groundwater flow is
simulated using MODFLOW-2000 [Harbaugh et al., 2000],
and the solution is used to generate 12 true groundwater
elevation observations (Figure 2b). No synthetic noise is
added to these observations, i.e., they are assumed to be
known exactly. Using these observations hydraulic conduc-
tivity was calibrated using two methods: (1) Tikhonov
regularized inversion as described by Doherty [2003] with
each of the 104 pilot points identified as a parameter in the
inversion and (2) the hybrid methodology. Following cal-
culation of base parameter sensitivities, 12 super parameters
were identified for estimation.
[52] In each case, interpolation of hydraulic conductivity

from pilot points to the model nodes was undertaken using
kriging based on the variogram described by (13). In each

case, smoothing regularization was specified between pilot
point pairs, whereby the difference between the logs of
hydraulic conductivity values at pairs of pilot points is
assigned a preferred value of zero (i.e., similarity) with a
relative weight equivalent to the inverse of the square of the
variogram value at that separation distance. Using this
scheme Fg is penalized more severely for differences in
values between closely spaced pilot points than for differ-
ences in values between more widely spaced pilot points.
The initial value for each pilot point was equated to the
mean of the true field, i.e., 1.0 m/d, and the target objective
function, Ft, was set to 1.0 � 10�8 m2.
[53] In both cases model-to-measurement misfit was re-

duced toFt. The true hydraulic conductivity field (Figure 2b)
is shown together with the fields estimated from the
Tikhonov regularized inversion (Figure 2c) and the hybrid
regularized inversion (Figure 2d). As would be expected,
in neither case is the true hydraulic conductivity field
recovered (Moore and Doherty, submitted manuscript,
2005). Given the paucity of observations both regularized
inversions recover a muted or smoothed representation of

Figure 2. Parameters and observations in synthetic study. (a) Multi-Gaussian field, pilot points (crosses)
and observations (circles), (b) true field and simulated heads, (c) Tikhonov field and simulated heads, and
(d) hybrid field and simulated heads.

Table 1. Model Temporal Discretization and Calibration Data

Stress
Period
Typea

Time,
days Description Calibration Targets

Flow Model
SS 0–2920 plume development (no PT remedy in

place)
151 time-averaged steady
state water levels

SS 2920–3060 simulation of the PT remedy; PT remedy
start-up at t = 2920 days

50 time-averaged steady
state water levels

Transport Model
TR 0–2920 plume development (no PT remedy in

place)
351 time-varying MTBE
concentrations
throughout the plume

TR 2920–3060 simulation of the PT remedy; PT remedy
start-up at t = 2920 days

128 time-varying MTBE
concentrations at the
recovery well

aSS, steady state; TR, transient.
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the true hydraulic conductivity field. Comparison of
Figures 2c and 2d reveals that the two estimated fields are
very similar, and in fact the pilot point values estimated
through both regularized inversions are essentially identical.
However, the Tikhonov inversion required 526 model
executions to achieve Ft whereas the hybrid inversion
required only 209 model executions. Noting that the
hybrid method required 105 model executions to calculate
the base parameter sensitivity matrix X, only 104 model
executions were required by the hybrid inversion in order
to achieve the same target objective function as the full
Tikhonov inversion. This represents a considerable time
saving; however, in instances where the ratio of the
number of base parameters to super parameters is greater,
such as in the real-world problem described next, these
savings may be considerably greater.

8. Real-World Application

[54] The hybrid methodology is applied to the inversion of
a flow-and-transport model using MODFLOW-2000 and
MT3DMS [Zheng and Wang, 1999]. The model was selected
due to current requirements for predictions and the avail-
ability of a detailed calibration data set. The model is under
development and no conclusions about its fitness for use
should be drawn from the results of this study. Its use as the
example model in this paper serves only to demonstrate that
the hybrid approach is applicable to large, highly nonlinear
models that exhibit lengthy execution times.

9. Site Description

[55] At the Hampton Bays Site, New York, releases from
underground storage tanks created a plume of contaminants
including the fuel oxygenate methyl-tertiary-butyl-ether

(MTBE). The site investigation is described fully online at
http://www.fueloxrem.com/ and only details relevant to
this study are given here. The geology of the site is
characterized by a sequence of highly transmissive glacial
outwash sands referred to as the Upper Glacial Aquifer
overlying a sequence of fine to medium sands comprising
the Magothy Aquifer [Franke and McClymonds, 1972;
Soren and Simmons, 1972]. Extensive characterization by
New York State Department of Environmental Conservation
(NYSDEC) contractor Environmental Assessment and
Remediations (EAR) using 40 multilevel monitoring loca-
tions delineated a fuel oxygenate plume migrating through
the Upper Glacial toward Tiana Bay, a sensitive saline water
body.
[56] A flow-and-transport model was constructed to sup-

port the design of a PT interim remedial measure (IRM)
comprising a single recovery well. The model simulates
steady state flow and transient transport, with first-order
decay of MTBE (Table 1). The model is composed of
14 layers, 203 rows, and 100 columns, with refinement of
the grid to 5 m by 5 m in the area of interest (Figure 3).
Multiple layers are necessary to simulate vertical transport
of the plume that migrates 25 m below the water table
before discharging at an elevation close to mean sea level.
Model boundaries are described by a Cauchy (general head)
condition representing upper Tiana Bay and a Dirichlet
(specified head) condition representing lower Tiana Bay.
Seventeen transport stress periods are simulated, represent-
ing 16 semiannual periods during plume development
followed by a single stress period during mass recovery at
the IRM. Selection of semiannual stress periods is based
upon anecdotal observations of time-varying mass releases.
The time-variable source concentration is estimated as part
of the inverse process.
[57] Initial predictions of interest from the model were the

extraction rate necessary to maintain hydraulic containment
of contaminants and the expected timing of reductions in the

Figure 3. Area of interest and model domain.

Figure 4. Typical concentration profile: Multilevel well
ML-22.
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flux of contaminants to Tiana Bay. Following the installa-
tion of a sensitive ex situ biologically activated Granular
Activated Carbon (Bio-GAC) treatment system the principal
prediction is the mass flux at the recovery well.
[58] Sharp fronts in the MTBE data suggest the problem

is advection-dominated. Reported nondetects often lie
adjacent to high concentrations at a separation approaching
the model node spacing (Figures 4 and 5). Sharp fronted
plumes within highly transmissive aquifers create two
particular problems that render them poor candidates for

highly parameterized calibration. First, the simulated plume
can be close to the real plume yet sensitivities with respect
to some observations may be zero, since the simulated
plume does not encompass these locations. Second, the
advection terms of the partitioned equation must be solved
using a scheme that can resolve sharp fronts [Zheng and
Bennett, 2002; Barth and Hill, 2005]. Solvers that mitigate
numerical dispersion while achieving satisfactory mass
balance, such as the Total Variation Diminishing (TVD)
scheme used here, have stability constraints that lead to long
simulation times.
[59] Some of these difficulties can be mitigated by first

developing a model that closely approximates advective
flow in the system. This was achieved here by calibrating a
parsimonious (over-determined) flow-and-path line model
to the estimated center of mass to obtain a starting point for
flow-and-transport model calibration [Pollock, 1994]. Cen-
ter of mass observations were determined using moments,
by gridding contaminant data at several transects approxi-
mately perpendicular to the groundwater flow direction
(Figure 6). This centers the simulated plume and provides
parameter sensitivities that span the propensity of observa-
tions (Figure 7). This is important prior to calculating base
parameter sensitivities in the hybrid methodology for rea-
sons already outlined.

10. Observation Data

[60] Table 1 summarizes the calibration data, including
water levels, MTBE concentrations in monitoring wells, and
MTBE concentrations at the IRM. The importance of
including concentrations in the objective function for
flow-and-transport model calibration is discussed by
Strecker and Chu [1986], Wagner and Gorelick [1987],
Gailey et al. [1991], Franssen et al. [2003], andMedina and
Carrera [1996, 2003]. These studies suggest that including
observations in the calibration that are of the same type as
the model prediction(s) may improve the reliability of the
calibrated model. Bard [1974], Sun [1994], Hill [1998], and
Koch [1999] among others detail the theoretical bases for
assigning observation weights. Ideally, Qm is proportional

Figure 5. Contoured MTBE concentrations for May 2003
for an elevation of �10 m to �13 m mean sea level (msl).

Figure 6. Example transect perpendicular to plume axis used in lumped parameter path line calibration.
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to the inverse of the covariance matrix of measurement
errors, yet information on the correlation structure of
measurement errors is usually unavailable [Sun, 1994].
Specifying the weight and/or the observed value for con-
centration data can also be complicated since it is not
evident if values below the reporting limit (RL) are slightly
below the RL or represent a true zero outside the footprint
of the plume [Barth and Hill, 2005].
[61] Gailey et al. [1991], Sun [1994], Weiss and Smith

[1998], and Barlebo et al. [2004], among others, discuss

alternative weighting strategies. Moore and Doherty [2005]
discuss selective weight assignment for reducing the error
variance of model predictions. In the present study
weights are assigned so that the contribution to Fm by
MTBE concentrations at the IRM well and MTBE con-
centrations in monitoring wells is similar at the com-
mencement of the inverse process. Groundwater elevations
are assigned low weights due to uncertainty in surveyed
elevations. This is consistent with findings of Barth and
Hill [2005].

11. Base Model Parameterization

[62] Table 2 summarizes the base parameterization.
Parameters from the upper nine layers of the model are
estimated, representing the Upper Glacial Aquifer. In total
1,195 base parameters are identified for estimation. This
includes parameters assumed to be spatially variable yet
constant in time (horizontal (HHK) and vertical (VHK)
hydraulic conductivity, porosity (POR), and recharge
(RCH)); parameters assumed constant within a model layer
and constant in time (general head boundary conductance
(GHB), dispersion (LDSP, TDSP), and decay rate (DEG));
and a time-varying source (SCON).
[63] The distribution of the base parameters HHK, VHK,

POR and RCH is described using pilot points (Table 2 and
Figure 7). Scalars describe the remaining base parameters,
i.e., GHB, LDSP, TDSP, DEG and SCON. Interpolation is
accomplished using kriging on the basis of an arbitrary
exponential variogram. Pilot points can be used in conjunc-
tion with parameter zones if ancillary information supports
the decision to do so. However, using pilot points ensures
that estimated parameter fields are smoothly varying, which
is generally consistent with the hydrogeology of the Upper
Glacial Aquifer.
[64] Tikhonov regularization is employed for base param-

eters described by pilot points. In the present study pilot
points representing parameters of the same type, within the
same layer, are linked by regularization equations. Smooth-
ness of the solution field is promoted using the approach
described for the synthetic model above, i.e., by equating
parameter differences to zero with weights that decay
exponentially with increasing separation distance. Regular-

Figure 7. Active area of transport (white) showing
observation locations, pilot points, source area, IRM well,
and calibrated path line (circles, water level observations;
stars, MTBE observations; crosses, pilot points).

Table 2. Model Parameterization

Layer(s) Parameter Type(s)a Parameter Description

Number of
Base

Parameters

Flow and Transport Parameters
1–7 conductivities (HHK, VHK) 55 pilot points for each of HHK, VHK for

each layer
770

1 recharge (RCH) 1 scalar for background recharge; 10 pilot
points for irrigation/septic

11

1 general head boundary (GHB) 1 scalar for GHB conductance 1

Transport Parameters
1–7b porosity (POR) 55 pilot points for each layer 385
1–9 decay (DEG) 1 scalar per active transport layer 9
1–9 dispersion (LDSP, TDSP) 2 scalars 2
1 source term (SCON) 1 scalar per stress period 17
Total 1,195

aHHK, horizontal hydraulic conductivity; VHK, vertical hydraulic conductivity.
bNote that parameters estimated for layer 7 are applied to layers 8 and 9 for the parameters HHK, VHK, and porosity.
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ization equations are not specified between parameters in
different model layers due to the stratified nature of the
aquifer materials. Pilot points are focused where observa-
tion data exist, with a small number of peripheral pilot
points used for interpolation to the remainder of the model
domain. This is consistent with the approach described by
RamaRao et al. [1995] who located pilot points where their
potential for reducing the objective function was greatest. In
the case of recharge, pilot points are focused in an area of
elevated return flows delineated by a consumptive use
study, and preferred value regularization is added to stabi-
lize the simultaneous estimation of HHK and RCH. In total,
18,000 regularization equations are specified.
[65] At the site, drilling indicated the presence of a

contiguous clay extending beneath the upper Tiana Bay
that is absent where incised by fresh water discharge during
low tides. This stratigraphy causes the plume to discharge
offshore, rather than at the shoreline as might otherwise be
expected. However, no pilot points were fixed at preferred
values, and no prior information was specified in response
to this knowledge. Rather, it was hoped that the inverse
process would identify the presence of this low permeability

unit through the information content of MTBE concentra-
tions sampled beneath Tiana Bay.

12. Model Inversion

[66] Solution of the transport equations was restricted to
the area of interest to reduce the forward execution time
below 60 minutes. Perturbation sensitivities were obtained
across 24 PCs with typical processor speeds of 2.4 GHz
using the parallelization capabilities of PEST [Doherty,
2005]. Calibration was completed in steps, in which the
model progressed toward more computationally intensive
methods to achieve a better fit to the data: (1) calibration of
a flow-and-path line model using a subset of the parameters
listed in Table 2, and lumping those parameters represented
by pilot points (the parameter types and number of param-
eters used were HHK(1), VHK(1), POR(1), RCH(2),
GHB(1), DEG(1) and SCON(17) for a total of 24 param-
eters), (2) calibration of the lumped parameters to the
MTBE concentrations, IRM recovery data, and water levels,
i.e., those observations that comprise the measurement
objective function Fm, (3) completion of the base parameter

Table 3. Summary of Hybrid Regularized Inversion Resultsa

Observation Group
Completion of

Lumped Calibration
Completion of

Hybrid Inversion
Percent

Reduction

MTBE mass removal 5.27E+06 2.00E+06 62
MTBE concentrations 9.31E+06 1.68E+06 82
Water levels 6.19E+02 3.71E+02 40
Composite objective function 1.46E+07 3.68E+06 74

aRead 5.27E+06 as 5.27 � 106.

Figure 8. (a) Simulated and (b) observed MTBE concentrations for May 2003 for an elevation of�10 m
to �13 m msl.
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sensitivity analysis using initial values for base parameters
determined from step 2, and (4) decomposition of XtQmX
into its component eigenvectors and eigenvalues, selection
of super parameters for estimation, and commencement of
the reformulated inverse problem.
[67] Calculation of X required 1195 executions of the

model and completed in 44 hours. Decomposition of
XtQmX indicated a fairly typical distribution of eigenvalues
spanning many orders of magnitude and declining rapidly,
suggesting the problem may be dominated by eigenvectors
corresponding to about the 20 largest singular values. On
the basis of the singular value spectrum and, pragmatically,
on the number of PCs and relative processor speeds avail-

able for sensitivity calculations, 30 super parameters were
defined for estimation. The hybrid inversion using super
parameters proceeded for 6 iterations, requiring approxi-
mately 190 forward model executions and 9 hours to
converge.

13. Results

[68] Comparison of the composite objective function and
the contribution to the objective function from the three
observation groups at the completion of the parsimonious
calibration and hybrid inversion indicates decreases in all
observation groups (Table 3). The most significant improve-

Figure 9. Simulated and observed MTBE concentration profiles: Multilevel wells ML-22, ML-9, ML-
20, and ML-25.
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ment is in the fit to MTBE concentrations at monitoring
wells. This might be expected since the use of pilot points
enables the hybrid methodology to introduce heterogeneity
in the spatially variable parameters such as hydraulic
conductivity and porosity.
[69] The fit is illustrated by visual comparison of simu-

lated and observed concentrations at wells contoured using
identical interpolation schemes, representing an elevation of
approximately �10 to �13 m, i.e., close to the middle
elevation of the plume and the midscreen elevation of the
recovery well (Figure 8). Similarly, vertical plots of the data
demonstrate reasonable fits, reproducing sharp vertical
profiles and showing noticeable improvement with respect
to the fit obtained from the lumped calibration (Figure 9)
(note that the lumped calibration predicted concentrations
below 1 ppb at ML-25). The improvement in fit to MTBE
concentrations at the IRM is about 60% (Table 3 and
Figure 10). Despite assigning low weights to water
level observations, the fit to observed water levels was
reasonable.
[70] Perhaps the most illuminating illustration of the

improved fit to point data is provided by two-dimensional
‘‘bubble plots’’ of simulated and observed MTBE concen-
trations in monitoring wells (Figure 11). In Figure 11 the
source area is located at right, and the discharge area, i.e.,
Tiana Bay, is located at left. The abscissa is the distance
from the source area and the ordinate is the elevation above
mean sea level. The area of each circle is proportional to
concentration. Figure 11b illustrates the match of simulated
and measured MTBE concentrations using the calibrated
lumped parameter model. The general path of the plume is
matched, i.e., the plume appears centered in the XZ plane.
However, the simulated plume gives the appearance of
simple spreading about a centerline, and areas of low or
high measured concentrations are not reflected in the
simulated equivalents. Figure 11c illustrates the match of
simulated and measured MTBE concentrations using the
optimized base parameters calculated through the hybrid
inverse process. Two particular features of this plot are
(1) the location of discharge (the hybrid inversion results
shows the plume discharging further offshore than in the
lumped parameter model) and (2) increased detail (the
hybrid inversion identified some areas of higher (and

lower) concentrations throughout the plume and is closer
to matching these).
[71] Review of the base parameters estimated in the

hybrid inversion suggests the improved fit may have been
principally obtained by the introduction of spatial variability
into hydraulic conductivity and porosity parameters
(Table 4). This is expected since using a large number of
pilot points together with Tikhonov regularization enables

Figure 10. Simulated and observed MTBE concentrations
at the IRM well.

Figure 11. Profile of MTBE concentrations in wells from
source area (right) to discharge location in Tiana Bay (left),
showing (a) measured MTBE, (b) measured MTBE and
simulated MTBE from lumped calibration, and (c) mea-
sured MTBE and simulated MTBE from hybrid calibration.
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the hybrid scheme to introduce such variability. Parameter
values estimated in the inversion are generally within the
range of values estimated from field testing and are not
unreasonable (Table 4). In particular the hybrid inversion
appears to identify the area of low vertical hydraulic
conductivity beneath the Tiana Bay, causing the simulated
plume to discharge further offshore than in the lumped
calibration (Figure 12).

14. Discussion and Concluding Remarks

[72] The hybrid method is based on the fact that though
there may be many base parameters, a limited number of
linear combinations of these parameters are estimable, these
being determined from the information content of the
observations. These combinations are identified and then
estimated. Other combinations of parameters are assigned
values that satisfy relationships supplied through Tikhonov
regularization constraints specified in accordance with the
modeler’s notion(s) of parameter reasonableness.

[73] Super parameters accelerate model calibration be-
cause throughout the inversion process sensitivities are
calculated not for individual base parameters but for combi-
nations of these parameters identified as important to
obtaining a good fit. This enables more rapid investigation
of the parameter space defined by the available observations
and current model design. In the real-world application the
number of super parameters (30) is not much greater that the
number of parameters in the prior parsimonious calibration
(24) yet the improvement in fit is noteworthy. Assuming
that the hybrid inversion, comprising 30 super parameters,
converged to a similar composite objective function as
might an inversion of the 1,195 base parameters, the hybrid
inversion converged 35–40 times more rapidly than an
inverse problem formulated in terms of the base parameters
would.
[74] The most notable feature of the hybrid method is that

it offers the potential for the regularized inversion of large
models, in terms of execution time and parameterization, for
which inversion is otherwise computationally prohibitive.

Table 4. Summary of Estimated Parameters Represented by Pilot Points

Parameter Minimum Mean Geomean Maximum Comments

HHK pilot points, m/d 16.5 144.5 140.2 1670.a range from slug/aquifer testsa:
33.5–120

VHK pilot points, m/d 1.07 1.43 1.40 2.84 n/a
Recharge pilot points, cm/yr 75.6 101.8 n/a 125.2 average recharge estimated from

water use studyb: 112
Porosity pilot points 0.12 0.21 0.20 0.40 n/a

aNote that this high value occurs adjacent to the incised channel area shown on Figure 13 corresponding with free-standing surface water in Tiana Bay.
This value approximates the upper bound for clean sands and gravels [Freeze and Cherry, 1979].

bEnvironmental Assessment and Remediations (personal communication, 2003).

Figure 12. Calibrated vertical and horizontal hydraulic conductivity, model layer 1.
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The hybrid method offers rapid inversion times and numer-
ical stability for over-parameterized models and better fits
than are achievable with a priori parameter parsimony. As
such the capacity to extract information from observation
data is greater than achieved through a priori parsimony.
Model inversion with a large number of regularized base
parameters, estimated using a smaller number of super
parameters, may do justice to the increasingly detailed
observation data sets available for model calibration.
[75] Since the hybrid method can use perturbation sensi-

tivities it is applicable either where adjoint sensitivities are
unavailable or where m > n and adjoint sensitivities are not
computationally beneficial. Where m < n using perturbation
sensitivities may still require fewer simulations than an
adjoint approach, since the number of significant singular
values of XtQmX, and hence the number of super param-
eters, may be less than the number of observations. Alter-
natively, where adjoint sensitivities are available and m < n,
an adjoint approach could be used to form the base
parameter Jacobian matrix when adjoint methods are the
most rapid. In the reformulated problem where the subspace
is defined by k < m, perturbation sensitivities could be
employed. This would provide the most computationally
efficient sensitivity calculation strategy for the hybrid
scheme.
[76] Carrera [1993] among others points out that as the

scale of simulated heterogeneity approaches the scale of true
heterogeneity, mechanical dispersion approaches the scale
of molecular dispersion. Noting that in the study model the
longitudinal dispersivity estimated in the hybrid inversion
(0.1 m) is smaller than that estimated in the lumped
parameter calibration (0.14 m) it is interesting to consider
if this occurs because one aspect of the field dispersion
mechanism, i.e., heterogeneity, is better represented in the
hybrid approach. Given the model discretization and the
smooth parameter fields estimated using Tikhonov regular-
ization, the model certainly does not capture small-scaled
mechanical dispersion mechanisms; however, it may be less
inhibited from doing so than parsimonious approaches.
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