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Abstract

A semi-analytical solution for the simulation of one-dimensional subsurface solute transport
incorporating multiple nonequilibrium processes is presented. The solution is based on the theory

Ž . wdeveloped by Brusseau et al. 1992 Brusseau, M.L., Jessup, R.E., Rao, P.S.C., 1992. Modeling
solute transport influenced by multiprocess nonequilibrium and transformation reactions. Water

Ž . xResources Research 28 1 , 175-182. which is a generalized combination of two-site and
two-region model. In addition to developing a semi-analytical complement to their numerical
solution, we extend the range of boundary and initial conditions considered. The semi-analytical
solution can represent domains of both finite and semi-infinite extent and accommodates nonzero
initial concentrations. The solution is derived in Laplace space and final results are obtained using
an accurate and robust numerical inversion algorithm. The solution is particularly well suited for
interpreting experimental results obtained under controlled laboratory conditions. Identification of
the input parameters for the solution is examined by simulating a column experiment by van

Ž . wGenuchten 1974 van Genuchten, M., 1974. Mass Transfer Studies in Sorbing Porous Media.
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1. Introduction

Mathematical models of solute transport are important tools for solving problems
involving groundwater contamination. Potential applications of models include planning
of site investigations, risk assessment, and design of remedial actions. These models
must be capable of representing the most significant processes affecting the transport of
solutes. There is evidence to suggest that models based on assumptions of ideal behavior

Žignore fundamental characteristics of the transport of solutes reviews are presented by
.Bouchard et al., 1988 and Brusseau and Rao, 1989a,c .

The transport of sorbing solutes is generally modeled with an idealized model, in
which the porous is represented as an interconnected continuum, and sorption is

Ž .represented as an equilibrium process instantaneous and reversible with a linear
isotherm. For a pulse input, this approach predicts symmetrical, bell-shaped break-
through curves. Departures from this ideal behavior have been observed at scales of
investigation ranging from column experiments to field-scale tests. Two examples of
nonideality are shown in Fig. 1. Fig. 1a plots results from a column experiment with the

Ž .herbicide 2,4,5-D 2,4,5-trichlorophenoxyacetic acid reported by van Genuchten et al.
Ž . Ž .1977 . Fig. 1b, taken from Goltz and Roberts 1986a , illustrates concentrations of
tetrachloroethene observed during the Stanford–Waterloo natural-gradient tracer test. Of
particular importance are the long tails of the breakthrough curves. If tailing is not
considered, then the ability to provide quantitative answers to basic questions is severely
compromised. For example, in the context of pump-and-treat remediation of contami-
nated sites, the duration of pumping and the volume of treated water cannot be estimated
reliably.

Two general mechanisms have been offered as explanations for nonideal behavior.
The first mechanism is adapted from the dual porosity hypothesis and is designated

Ž .Fig. 1. Evidence of transport nonequilibrium from a field-scale experiment Goltz and Roberts, 1986a,b .
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Ž .physical nonequilibrium PNE . Originally developed to represent flow in densely
fractured porous media, the dual porosity hypothesis idealizes the porous medium as two

Ž .interacting continua. In the first continuum the mobile region , the pore water is
Ž .relatively mobile, while in the second the immobile region , advection is minimal

Ž .Coats and Smith, 1964 . Solute transport in a dual porosity medium is characterized by
early breakthrough resulting from rapid advective transport in the mobile region and
tailing resulting from the slow diffusive mass transfer between the mobile and immobile
regions.

Different models for dual porosity have been developed based on assumptions about
the geometry of the mobile and immobile regions. Geometrical models conceive of the
immobile region as an idealized assemblage of simple elements, for example, as uniform

Ž .slabs and spheres e.g., Huyakorn et al., 1983 . An alternative approach is to represent
the diffusive flux between the mobile and immobile regions by a first-order mass
transfer reaction. The first-order mass transfer approach has been applied to cases of

Žaggregated porous media van Genuchten and Wierenga, 1977; van Genuchten et al.,
. Ž .1977 , and discrete layering Brusseau, 1991 . The first-order approach has also been

Žapplied to simulate transport in heterogeneous aquifers Brusseau and Rao, 1989b;
.Brusseau and Srivastava, 1997 . In this context, the approach is purely phenomenologi-

cal and the mass transfer coefficient becomes merely a fitting parameter.
PNE affects the transport of both sorbing and nonsorbing solutes and is commonly

associated with aggregated and fractured porous media. However, tailing has also been
observed in column studies with sorbing organic solutes in uniform, granular porous

Ž .media e.g., Liu et al., 1991 . Therefore, a second mechanism has been proposed to
explain nonideal behavior of organics. This second mechanism is designated sorption

Ž . Žnonequilibrium SNE . SNE represents the combined effects of intrasorbent intraor-
.ganic or intramineral diffusion and rate-limited interactions between the solute and

sorbent. In the two-site conceptualization, sorption is assumed to occur at two sites: at
the first site, sorption is an equilibrium process; at the second site, sorption is a
rate-limited process. The rate-limiting sorption reaction is represented as a first-order
reaction.

Many analytical solutions based on the mobile–immobile conceptualization, referred
to as two-region models, have been developed. Examples included those of van

Ž . Ž .Genuchten and Wierenga 1976 and Goltz and Roberts 1986b . Carnahan and Remer
Ž .1984 presented an analytical solution incorporating rate-limited sorption. Analytical
solutions based on the two-site model have also been developed by Cameron and Klute
Ž . Ž .1977 and van Genuchten and Wagenet 1989 . It has been long recognized that
two-region and two-site models are mathematically identical. Several studies used this
identity to develop analytical solutions to handle either physical or chemical nonequilib-

Ž . Žrium i.e., two-site or two-region models e.g., Leij et al., 1993; Toride et al., 1993; Leij
.and van Genuchten, 2000 . However, none of the existing solutions can be used to

handle both nonequilibrium processes simultaneously.
Ž .Brusseau et al. 1989 formulated a model that incorporates both physical and

Ž .sorption nonequilibria, which they called the multiprocess nonequilibrium MPNE
Ž .model. Brusseau et al. 1992 extended the model to consider transformation reactions

represented as first-order decay processes. The model integrates the two-region and
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two-site conceptualizations. The mobile and immobile regions are each subdivided into
three compartments. The first compartment in each region is the dissolved phase and the
second and third compartments constitute the two sites of the sorbed phase. The sorption
sites are split into a fraction where sorption occurs instantaneously, and a remaining
fraction where sorption follows first-order kinetics. Transport between the mobile and
immobile regions is modeled with a first-order mass transfer approach.

Several numerical models implementing the MPNE model have been developed.
Ž .Brusseau et al. 1992 used a one-dimensional finite difference solution to simulate

Ž .column experiments. Sudicky personal communication, 1989 developed the first
two-dimensional finite element solution to the MPNE equations. The solution is based

Ž . Ž .on the Laplace Transform Galerkin LTG technique presented in Sudicky 1989, 1990
Ž .and was used by Brusseau et al. 1989 to assess the relative contributions of chemical

sorption kinetics, intraparticle diffusion and geologic heterogeneity on plume evolution.
Ž .Therrien et al. 1990 extended the LTG solution to three dimensions and applied their

model to the interpretation of forced-gradient tracer tests in heterogeneous sand aquifers.
Ž .Recently, Zhang and Brusseau 1999 have published an important field-scale applica-

tion of the MPNE model with a three-dimensional numerical solution based on the
modified method of characteristics.

In this paper, we present an analytical Laplace transform solution for one-dimen-
sional transport with MPNE. Exact analytical or semi-analytical solutions generally can
be derived only for problems involving homogeneous media and simple boundary
conditions. In light of these restrictions, and the existence of general numerical
solutions, the obvious question is: why develop an analytical solution for MPNE? The
first answer is that these sophisticated numerical solutions demand verification. Second,
there exists a need for simple solutions that can be used as screening tools, particularly
for preliminary modeling in the absence of data. Finally, analytical solutions are ideally
suited for the interpretation of experimental results obtained under controlled laboratory
conditions. For this application, their freedom from spatial and temporal discretization
requirements is a significant advantage over numerical solutions.

The solution is derived using the Laplace transform technique, with the final results
obtained by numerical inversion of the transformed solution. Special attention is directed
towards implementing the solution in a code that is robust and capable of predicting
concentrations over a wide range of environmental interest. The solution is verified
using the results of a numerical simulation of a column experiment. The identifiability of
input parameters for laboratory-scale applications is examined by simulating van

Ž .Genuchten 1974 experiments 3–5.

2. Mathematical formulation

In this section, we develop the governing equations of the MPNE model in order to
clarify each equilibriumrnonequilibrium process which constitute the model. This level
of detail in the mathematical formulation is typically missing from the literatures on

Ž .two-region andror two-site models e.g., Brusseau et al., 1989 .
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2.1. Assumptions

Ž .The key assumptions of the MPNE model are summarized below. 1 The domain is
represented as a dual porosity continuum. Mass transfer between the mobile and

Ž .immobile regions is modeled as a first-order mass transfer reaction. 2 Sorption occurs
at both equilibrium and rate-limited sites. At the equilibrium sites, sorption is instanta-
neous and reversible and is governed by a linear isotherm. At the rate-limited sites,
sorption is represented as a first-order reaction. The mobile and immobile regions are

Ž .characterized by separate sorption properties. 3 Transformation reactions are modeled
as first-order decay processes. If microbially-mediated reactions are represented using
this approach, then it is tacitly assumed that they are not limited by substrate availability
Ž .e.g., oxygen is in unlimited supply and that contaminant concentrations are relatively

Ž .low Criddle et al., 1991 . For maximum generality, the dissolved and sorbed phases in
the mobile and immobile regions are assigned separate decay rates.

Several additional assumptions are required for a tractable one-dimensional analytical
treatment:

1. The material properties are spatially uniform and temporally constant.
2. The Darcy flux is steady, one-dimensional, and spatially uniform.
3. Longitudinal dispersion is assumed to be a Fickian process, characterized by a

constant dispersion coefficient. Dispersion in the transverse directions is neglected.
4. The initial concentrations in the domain are uniform. For maximum generality, the

initial concentrations are specified separately for the dissolved and sorbed phases.

2.2. GoÕerning equations

The MPNE model is cast in terms of six concentrations: one dissolved phase and two
sorbed phase concentrations for each of the mobile and immobile regions. In the
following development, use is made of mass balance equations and constitutive relations
to derive the six equations, which comprise the MPNE model.

2.2.1. Mobile region
Within the mobile region, the MPNE model accounts for advective–dispersive

transport, mobile–immobile mass transfer, equilibrium and rate-limited sorption and
first-order transformation reactions. The statement of mass conservation for the dis-
solved phase in the mobile region is written as:

E u C E f rS EJŽ . Ž .m m m m
q sy yG yG yG 1Ž .l l imm SmEt Et Ex

The terms appearing in this and all subsequent equations are defined in the Notation.
The left-hand side of the mass balance equation represents the time rate of change of
mass in the dissolved and sorbed phases in the mobile region. In this expression, the
term f designates the mass fraction of sorbent that is accessible to the dissolved phase in
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the mobile region. Solute in the sorbed phase is partitioned between the equilibrium and
rate-limited sorption sites:

S sS qS 2Ž .m m1 m 2

Ž .The first term on the right-hand side in Eq. 1 is the advective–dispersive mass flux
in the dissolved phase and is defined as:

ECm
J syu D qqC 3Ž .m m m

Ex

The second and third terms on the right-hand side, G and G , are sinksl lm Sm
representing first-order transformation reactions in the dissolved and sorbed phases. The
first-order transformation sink terms are written as:

G su l C 4Ž .l m m mm

G s f r l S ql S 5Ž .Ž .l S m1 S m 2S m1 m 2m

For the first-order mass transfer model, the sink term representing mobile–immobile
interaction is expressed as:

G sa C yC 6Ž . Ž .im m im

Ž .Assembling all of the terms in the original mass balance, Eq. 1 yields:

E u C ES ES E EC EŽ .m m m1 m 2 m
q f r q f r s u D y qC yu l CŽ .m m m m mž /Et Et Et Ex Ex Ex

y f r l S ql S ya C yCŽ .Ž .S m1 S m 2 m imm1 m 2

7Ž .

The sorbed phase concentration at the instantaneous sorption sites is defined in terms
of the following equilibrium constitutive relation:

S sF K C 8Ž .m1 m m m

In this relation, F represents the mass fraction of sorption sites in the mobile regionm

where sorption is instantaneous. The sorbed phase concentration at the rate-limited sites
is defined in terms of a mass balance equation:

ESm 2
sk 1yF K C yS yl S 9Ž . Ž .m 2 m m m m 2 S m 2m 2Et

Substituting for the sorbed phase concentrations and invoking the assumption of
constant material properties yields the final form of the transport equation for the mobile
region:

ECm
u q f rF K q u l q f rl F K C qa C yCŽ . Ž .Ž .m m m m m S m m m m imm1Et

E2 C ECm m
q f rk 1yF K C yS su D yq 10Ž . Ž .m 2 m m m m 2 m 2 ExEx
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2.2.2. Immobile region
The governing equations for the immobile region are analogous to those derived for

the mobile region, with the exception that advection and dispersion are not considered.
The statement of mass conservation for the immobile region is written as:

E u C E 1y f rSŽ . Ž .Ž .im im im
q syG yG qG 11Ž .l l imim SimEt Et

The left-hand side of the mass balance equation represents the time rate of change of
mass in the dissolved and sorbed phases in the immobile region. In this expression, the

Ž .term 1y f designates the mass fraction of sorbent that is accessible to the dissolved
phase in the immobile region. Solute in the sorbed phase is partitioned between the
equilibrium and rate-limited sorption sites:

S sS qS 12Ž .im im1 im 2

Ž .The mobile–immobile mass transfer term, G , is defined by Eq. 6 . The remainingim

components of the right-hand side sink term are analogous to those for the mobile region
and are written as:

G su l C 13Ž .l im im imim

G s 1y f r l S ql S 14Ž . Ž .Ž .l S im1 S im 2S im1 im 2im

The expressions for the sinks are similar to those presented for the mobile region,
noting that the sign of the mobile–immobile mass transfer term is reversed.

Ž .Assembling all of the terms in the mass balance, Eq. 11 yields:

E u C ES ESŽ .im im im1 im 2
q 1y f r q 1y f rŽ . Ž .

Et Et Et

syu l C y 1y f r l S ql S qa C yC 15Ž . Ž . Ž .Ž .im im im S im1 S im 2 m imim 1 im 2

The sorbed phase concentrations at the instantaneous and rate-limited sorption sites
are defined by:

S sF K C 16Ž .im1 im im im

ESim 2
sk 1yF K C yS yl S 17Ž . Ž .im 2 im im im im 2 S im 2im 2Et

In these relations, F represents the mass fraction of sorption sites in the immobileim

region where sorption is instantaneous.
Substituting for the sorbed phase concentrations and invoking the assumption of

constant material properties yields the final form of the transport equation for the
immobile region:

ECim
u q 1y f rF K q u l q 1y f rl F K CŽ . Ž .Ž . Ž .im im im im im S im im imim 1Et

q 1y f k r 1yF K C yS sa C yC 18Ž . Ž . Ž . Ž .im 2 im im im im 2 m im

Ž . Ž .The governing equations presented here differ from Eqs. 4 and 5 of Brusseau et al.
Ž .1992 . In particular, their equations are missing decay terms for the equilibrium sorbed
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phases. The equations defining the concentrations in the equilibrium sorbed phases are
more correctly interpreted here as constitutive relations rather than mass balance
equations.

2.3. Initial and boundary conditions

2.3.1. Initial conditions
Ž .The model of Brusseau et al. 1992 assumes that the domain is initially devoid of

contaminants. The initial conditions considered by our analytical solution are somewhat
more general. It is assumed that the domain is uniformly contaminated and that the
initial concentrations in each of the compartments are specified independently:

C x ,0 sC 0 19aŽ . Ž .m m

C x ,0 sC 0 19bŽ . Ž .im im

S 0 sS0 19cŽ . Ž .m 2 m 2

S 0 sS0 19dŽ . Ž .im 2 im 2

If the initial condition of the domain is such that C 0 /0, and has existed as such form

a long period of time, then the following initial concentrations may be assigned:

C x ,0 sC 0 20aŽ . Ž .m m

C x ,0 sC 0 20bŽ . Ž .im m

S 0 sK C 0 20cŽ . Ž .m 2 m m

S 0 sK C 0 20dŽ . Ž .im 2 im m

2.3.2. Boundary conditions
Boundary conditions are required only for the dissolved phase in the mobile region.

Ž .The model developed by Brusseau et al. 1992 considers a third-type inflow boundary
condition. For the analytical solution, a ‘‘generalized’’ inflow boundary condition
capable of representing either first or third-type conditions is used. Adopting the

Ž .notation of Leij et al. 1991 , the inflow boundary condition is expressed as:

E
qC 0,t yu dD C 0,t sqC 1yH ty t 21Ž . Ž . Ž . Ž .m m m 0 0

Ex

where H is the Heaviside step function, designating a step input extending from time
Ž .s0 to t . The reader should note that ds0 and ds1 specify first-type Dirichlet and0

Ž .third-type Cauchy boundary conditions, respectively.
Ž .The finite difference solution of Brusseau et al. 1992 is necessarily restricted to a

finite domain. For analytical solutions, this restriction does not exist and both finite and
semi-infinite domains are considered here. A finite domain is specified by the following
outflow boundary condition:

E
C L,t s0 22Ž . Ž .m

Ex
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A semi-infinite domain is specified by the following outflow boundary condition:

C `,t sC 0 exp yl t 23Ž . Ž . Ž .m m m

2.4. Analytical solutions in the Laplace domain

The final set of governing equations for the MPNE formulation comprises a set of
four linear differential equations involving four unknown concentrations, i.e., C , C ,m im

Ž Ž . Ž . Ž . Ž .S and S described in Eqs. 10 , 9 , 18 and 17 . The linearity of the governingm2 im2

equations is important because it offers the possibility of deriving analytical solutions
using integral transform methods. The analytical solution is derived by straightforward
application of the Laplace transform. The complete derivation of the solution is given in

Ž .Neville 1992 .

Ž .Step 1 : apply the Laplace transform with respect to time to each of the governing
equations and to the boundary conditions.

Ž .Step 2 : solve the transformed governing equations for the rate-limited phases,
expressing S and S in terms of C and C , respectively. The over-m2 im2 m im

bars denote Laplace-transformed quantities.
Ž .Step 3 : solve the transformed mass transfer reaction by substituting for S ,im2

expressing C in terms of C only.im m
Ž .Step 4 : derive the final form of the transformed governing equation in terms of Cm

by substituting for C and S . The transformed governing equation isim im2

a linear, second order ordinary differential equation.
Ž .Step 5 : derive the general solution for C . For the case of zero initial concentration,m

the governing equation is homogeneous and the solution is obtained direct-
ly. For the case of nonzero initial concentration, the solution is derived as
the sum of a complementary and a particular solution.

Ž .Step 6 : solve for the undetermined coefficients in the general solution by imposing
the transformed boundary conditions. Separate solutions are develop-
ed separately for the cases of a semi-infinite and finite domain.

Semi-infinite domain

q C a G0 qG0
0 1 2

C s 1yexp ypt y exp H xŽ . Ž .m 0 1ž /qyu dDH p Bm 1

a G0 qG0
1 2

q 24Ž .
B

Finite domain

D D a G0 qG0
2 3 1 2

C s exp H x q exp H x q 25Ž . Ž . Ž .m 1 2D D B1 1
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where

2(qy q q4Bu Dm
H s 26aŽ .1 2u Dm

2(qq q q4Bu Dm
H s 26bŽ .2 2u Dm

D sH qyu dDH exp H L yH qyu dDH exp H L 26cŽ . Ž . Ž . Ž . Ž .1 2 m 1 2 1 m 2 1

qC a G0 qG0
0 1 2

D s 1yexp pt yq H exp H L 26dŽ . Ž . Ž .Ž .2 0 2 2ž /p B

qC a G0 qG0
0 1 2

D sy 1yexp pt yq H exp H L 26eŽ . Ž . Ž .Ž .3 0 1 1ž /p B

w xBsu G qG qG qG 26fŽ .m 1 2 3 4

f r
G s 1q F K p 26gŽ .1 m mž /um

k pql1 Ž .m 2 Sm 2
G s f r 1yF K 26hŽ . Ž .2 m mž /u pqk qlm m 2 Sm 2

1 agya 2

G s 26iŽ .3 ž /u gm

f r
G sl q l F K 26jŽ .4 m S m mm1um

gsp u qr 1y f F K qu l qr 1y f F K lŽ . Ž .Ž .im im im im im im im S im 1

pqlS im 2qr 1y f 1yF K k qa 26kŽ . Ž . Ž .im im im 2 pql qkS im 2im 2

The terms G0 and G0 are associated with the initial conditions and are defined as:1 2

r 1y f kŽ . im 20 0 0G s S q u qr 1y f F K CŽ .Ž .1 im 2 im im im impql qkS im 2im 2

P p u qr 1y f F K qu l qr 1y f l F KŽ . Ž .Ž .im im im im im S im imim 1

y1
pqlS im 2qr 1y f 1yF K k qa 27aŽ . Ž . Ž .im im im 2 pqk qlim 2 S im 2

r fkm 20 0 0G s u qr fF K C q S 27bŽ . Ž .2 m m m m m 2pqk qlm 2 Sm 2
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2.4.1. Special cases
The advantage of the solution technique described here is its ability to represent a

very general physical conceptualization, with flexible boundary and initial conditions.
ŽFor example, when the SNE parameters, F and F , are set equal to 1.0 i.e., all sitesm im

.are equilibrium sites , the solution collapses to the two-region model. Similarly, when
Ž .the mobile porosity is set equal to the total porosity i.e., u su and the sorbent ism

Ž .specified to be completely accessible to the dissolved phase i.e., fs1.0 , the solution
reduces to the two-site model. Solutions for these special cases have been presented by

Ž .van Genuchten and Wagenet 1989 .
The solution developed here is also a relatively general model for equilibrium

Žtransport specifying the porosity as entirely mobile and the sorption sites as all
. Ž . Ž .equilibrium-controlled . For a first-type Dirichlet inflow boundary condition ds0 ,

Ž .the solution encompasses those of Ogata and Banks 1951 , Lapidus and Amundson
Ž . Ž .1952 , and Bear 1972, p. 630 for a semi-infinite domain, and Cleary and Adrian
Ž . Ž . Ž .1973 for a finite domain. For a third-type Cauchy inflow boundary condition ds1 ,

Ž . Ž .the solution encompasses those of Bastian and Lapidus 1956 , Lindstrom et al. 1967 ,
Ž . Ž .and Gershon and Nir 1969 for a semi-infinite domain, and Brenner 1962 and

Ž .Dankwerts 1953 for a finite domain.

3. Evaluation and verification

3.1. EÕaluation

Final values of the solution are obtained by numerical inversion of the Laplace
transform solution. The decision to numerically invert the transformed solution offers
two immediate advantages: first, the difficult step of deriving an analytical inverse is
eliminated; second, the transformed solution is generally easier to evaluate. This

Ž .approach was introduced in the hydrogeologic literature by Moench and Ogata 1981 ,
Žand is now used frequently to evaluate solutions see for example Goltz and Oxley,

.1991 . The success of this approach hinges on the ability to carry out the inversion
accurately. For diffusion-dominated problems, there are several algorithms that yield
accurate results. Unfortunately, for advection-dominated problems involving sharp fronts,
these inversion techniques generally fail, yielding spurious results or underroverflow
problems.

The groundwater modeling group at the University of Waterloo has obtained excel-
Ž .lent results using the inversion algorithm developed by de Hoog et al. 1982 . This

Ž .algorithm has been used for both numerical models LTG method and analytical
solutions, and has been applied to a broad spectrum of conditions, ranging from pure

Ž .diffusion to almost pure advection Therrien et al., 1990; Sudicky and McLaren, 1992 .
The solution is implemented in a FORTRAN program. A copy of the code with
documentation is available from the first author, free upon request.

3.2. Verification

The implemented solution has been tested extensively. We report here only the
testing of the full MPNE formulation. Because no other analytical solutions based on the
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Table 1
Parameters for experiments 1–4

Parameter Value
3Bulk density r 1.360 grcm

Darcy flux q 5.11 cmrday
3Dispersion coefficient D 3.673 cm rday

Total water content u 0.473
Proportion of mobile pore water f 0.929
Fraction of mobile sorption sites f 0.929
Fraction of equilibrium sorption sites F 0.50m

Fraction of equilibrium sorption sites F 0.50im
y1Mass transfer coefficient a 0.075 day

3Sorption coefficient K 0.429 cm rgm
3Sorption coefficient K 0.416 cm rgim
y1Sorption rate constant k 0.663 daym2
y1Sorption rate constant k 0.663 dayim2

Pulse period t 7.672 day0

Column length L 30.0 cm

MPNE model have been reported, the solution developed here is compared against the
results from a numerical solution.

The implementation of the MPNE formulation is verified by comparison with the
Ž .Brusseau et al. 1989 simulations of the column experiments reported by van Genuchten

Table 2
Parameters for experiments 3–5

Parameter Value
3Bulk density r 1.222 grcm

Total water content u 0.456
Darcy flux q 3.975 cmrday
Pulse period t 9.653 day0

Column length L 30.0 cm
3Dispersion coefficient D 5.313 cm rday

Proportion of mobile pore water f 0.88
y1Mass transfer coefficient a 0.03 day
3Sorption coefficient K 0.426 cm rgm
3Sorption coefficient K 0.426 cm rgim

y1Sorption rate constant k 0.66 daym2
y1Sorption rate constant k 0.66 dayim2

Fraction of equilibrium sorption sites F 0.50m

Fraction of equilibrium sorption sites F 0.50im

Fraction of mobile sorption sites f 0.88
y1Decay coefficient l 0.058 daym

Decay coefficient l –S m1

Decay coefficient l –S m2

Decay coefficient l –im

Decay coefficient l –S im1

Decay coefficient l –S im2
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Ž .Fig. 2. Verification example: van Genuchten et al. 1977 . Experiments 1–4.

Ž .et al. 1977 . The column experiments were conducted to study the transport of the
Ž .herbicide 2,4,5-D. The results presented by Brusseau et al. 1989 were obtained using a

one-dimensional finite difference model incorporating Crank–Nicolson time-weighting.
No information was provided about either the spatial or temporal discretizations used for
their simulations, nor was there any indication of the criteria used to select these
discretizations.

For the sake of brevity, only the comparison of the analytical and numerical solutions
for the calibration of experiments 1–4 is presented here. The dimensionless parameters

Ž .for the simulation are given in Brusseau et al. 1989, Fig. 6 but the corresponding
dimensional parameter values are not reported. The dimensional parameters are listed
here in Table 1. Some of the parameter values were obtained from van Genuchten et al.
Ž .1977, Tables 1 and 2 . The remaining values were deduced from the values of the
dimensionless parameters. The results of the analytical and numerical solutions are
shown in Fig. 2. In Fig. 2, time is expressed as dimensionless pore volumes, defined as
TsqtrLu .

( )4. Application of the MPNE model to van Genuchten 1974 experiments 3–5

In this section, we demonstrate the application of the MPNE model by re-visiting
Ž .another of the van Genuchten and Wagenet 1989 experiments with 2,4,5-D, numbers

Ž .3–5. Brusseau et al. 1992 simulated this experiment with their numerical solution, but
presented only a brief discussion of the identification of input parameters. We expand
upon this discussion in order to clarify the interpretation of the input. The final
parameter set is assembled in Table 2.
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4.1. Input parameters

( )4.1.1. Basic data r , u , q, t , L0
Ž .The basic data for the simulation are taken from van Genuchten 1974 . These data

correspond to the preliminary measurements required for any simulation.

( )4.1.2. Dispersion coefficient, PNE parameters D, f , a

van Genuchten conducted column experiments with tritiated water to provide inde-
pendent estimates of the dispersion coefficient and PNE parameters. Tritium sorbs
relatively weakly, and its half-life of about 12 years is much longer that the duration of
the column experiments. Therefore, for the purposes of this analysis, it is assumed to be
a nonreactive tracer.

According to the conceptual model of MPNE, PNE affects both sorbing and
nonsorbing solutes. Therefore, the tritium breakthrough data are interpreted using a
two-region model. The conditions for experiments 3–5 are most similar to those

Ž .reported for experiments 3–4 by van Genuchten and Wierenga 1977 . From their
Ž .analysis of the data, van Genuchten and Wierenga 1977 estimated a dispersion

coefficient, D, of 5.7 cm2rday, a proportion of mobile pore water, f equal to 0.88, and
mass transfer coefficient, a of 0.10 dayy1. We assume that the dispersion coefficient is
dominated by mechanical dispersion, so that the dispersion coefficient for experiments
3–5 can be estimated by scaling the dispersion coefficient with respect to the Darcy
flux. The Darcy flux for experiments 3–4 is 4.20 cmrday while the flux for experiments
3–5 is 3.975 cmrday. Hence, the estimated dispersion coefficient for experiments 3–5
is 5.3 cm2rday.

A mass transfer coefficient for tritium was estimated from experiments 3–4. The
mass transfer coefficient for 2,4,5-D is estimated by adjusting the fitted value for tritium

Ž .according to the ratios of the free-solution diffusion coefficients Brusseau et al., 1992 .

D0
2,4,5- D

asaexp. 3 – 4 0D3H

where a and a are the mass transfer coefficients for 2,4,5-D and experimentsexps. 3 – 4

3–4, respectively, and D0 and D0 are the free-solution diffusion coefficients for2,4,5-D 3H

2,4,5-D and 3H, respectively.

( )4.1.3. Sorption parameters K, k, F, f
Ž .van Genuchten et al. 1977 reported the results of batch sorption tests with 2,4,5-D.

The sorption data were found to follow a nonlinear Freundlich isotherm. For an
equilibrium porewater concentration C in units of mgrcm3 and solid phase concentra-
tion S in units of mgrg, they obtained the mildly nonlinear relation.

Ss0.616C 0.792

The analytical approach developed for this study does not accommodate nonlinear
Ž .solution. Hence, we follow the approach adopted by van Genuchten 1974 in using an
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equivalent linearized sorption coefficient. For a porewater concentration ranging from 0
Ž 3. lto 10 mgrcm , the linearized sorption coefficient, K , is defined by:

10 10l 0.792K Cdcs 0.616C dCH H
0 0

Integrating both sides yields a linearized partitioning coefficient K l of 0.426 cm3rg.
For this simulation, it is assumed that the sorption coefficient is the same for the mobile
and immobile regions, i.e., K sK sK .m im p

The rate constant for nonequilibrium sorption is estimated by using a correlation with
Ž .batch sorption coefficients presented by Brusseau and Rao 1992 :

log k sy1.789y0.63log K2 p

Ž .where k is the kinetic desorption coefficient, and K is the partitioning sorption2 p

coefficient.
Ž .It is assumed that the partitioning sorption coefficient in this relation is given by the

linearized coefficient K l. Using a value of K of 0.426, we calculate k s0.66 dayy1.p 2

For this simulation, it is assumed that the mobile and immobile rate constants are the
same, i.e., k sk .m2 im2

The fractions of instantaneous sorption sites in the mobile and immobile regions are
assigned the same assumed value, F sF s0.5. It is also assumed that the proportionm im

of sorption sites that are accessible to the solute in the mobile region is equal to the
proportion of the pore water that is mobile, i.e., fsf.

4.1.4. Decay coefficients
A decay rate for the dissolved phase in the mobile region was estimated by Brusseau

Ž . y1et al. 1992 , l s0.058 day . It is assumed that decay only occurs in the dissolvedm

phase in the mobile region.

Fig. 3. Application example of the MPNE model for van Genuchten experiments 3–5.
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4.2. Results

The observed breakthrough data and results obtained from the analytical solution are
shown in Fig. 3.

5. Conclusions

In this paper, it has been demonstrated that the Laplace transform is an effective
technique for developing analytical solutions for simulating nonidealities in solute
transport. The solution derived here is based on the MPNE model developed by

Ž .Brusseau et al. 1989, 1992 and is capable of representing a wider range of boundary
and initial conditions than their numerical solution. The advantage of the Laplace
transform technique is that it allows for straightforward derivation of analytical solutions
that incorporate a very general physical conceptualization, with a broad range of

Ž .boundary and initial conditions. The use of the algorithm of de Hoog et al. 1982 to
numerically invert the Laplace-transformed solutions yields a code that is accurate and
robust.

Quantitative analysis of field-scale processes is only possible if laboratory data are
available to estimate some of the MPNE parameters. The real utility of the solution will
be in the analysis of data obtained under controlled laboratory conditions. The analytical
solution can be readily incorporated as a subroutine in automated parameter estimation
codes. For this application, its freedom from discretization and time-stepping require-
ments represents a significant advantage over numerical models.

Notation
Cm w y3 xconcentration in mobile region dissolved phase ML
Cim w y3 xconcentration in immobile region dissolved phase ML
Sm1 w y1 xconcentration at instantaneous sorption sites in mobile region MM
Sm2 w y1 xconcentration at rate-limited sorption sites in mobile region MM
Sim1 w y1 xconcentration at instantaneous sorption sites in immobile region MM
Sim2 w y1 xconcentration at rate-limited sorption sites in immobile region MM
t w xtime elapsed since beginning of solute release T
p w y1 xLaplace transformed variable for time T
x w xdistance from inflow boundary L
L w xlength of the domain for finite case L
r w y3 xbulk density of porous medium ML
q w y1 xDarcy flux LT
D w 2 y1 xhydrodynamic dispersion coefficient L T
u w xtotal water content –
f w xproportion of pore water that is mobile – fsu rum

um w xmobile water content – u sfum

uim w x Ž .immobile water content – u s 1yf uim

f w xmass fraction of sorbent in contact with the mobile region dissolved phase –
a w y1 xfirst-order mass transfer coefficient T
Fm w xand mobile region fraction of instantaneous sorption sites –
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Fim w ximmobile region fraction of instantaneous sorption sites –
Km w 3 y1 xmobile region equilibrium sorption coefficient L M
K im w 3 y1 ximmobile region equilibrium sorption coefficient L M
km2 w y1 xmobile region first-order kinetic desorption coefficient T
k im2 w y1 ximmobile region first-order kinetic desorption coefficient T
t0 w xduration of the finite-duration source T
lm w y1 xmobile region dissolved phase first-order decay rate T
lS m1

w y1 xmobile region instantaneous sorption sites first-order decay coefficient T
lS m2

w y1 xmobile region rate-limited sorption sites first-order decay rate T
l im w y1 ximmobile region dissolved phase first-order decay rate T
lS im1

w y1 ximmobile region instantaneous sorption sites first-order decay rate T
lS im2

w y1 ximmobile region rate-limited sorption sites first-order decay rate T
C0 w y3 xsolute concentration in inflow reservoir ML
d inflow boundary coefficient: s0 Type 1 inflow boundary condition, s1 Type

3 inflow boundary condition
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