
 1

Simulating heat transport with a standard solute transport code 
 
C.J. Neville 
S.S. Papadopulos & Associates, Inc. 
Last update: October 17, 2005 
 
1. Overview 
 
In general, the transport of heat in groundwater systems is a coupled process.  Changes in 
temperature affect the density of water, and the changes in water density perturb the 
groundwater flow field that moves heat by convection.  Although the coupling is 
relatively weak, the solution of coupled problems is significantly more challenging that 
simulating uncoupled groundwater flow or solute transport.  For example, coupled 
processes generally cannot be simulated with screening-level analytical approaches.  If 
we de-couple the heat transport problem by assuming that groundwater flow is not 
affected by temperature, we can simulate the movement of heat in flowing groundwater 
(more particularly the distribution of temperature) using a standard analytical solution for 
solute transport code such as ATRANS, or a standard numerical solution such as 
MT3DMS. 
 
For uncoupled analyses, we can apply standard solute transport codes with the following 
substitutions: 
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⇒ Regardless of the significance of coupling in a particular application, we 

recommend that a preliminary analysis be conducted in which coupling is 
neglected.  The results from the first-cut analysis with a simplified approach will 
provide a good approximation and can be used to check the results of more 
comprehensive approaches. 

 
In the remainder of this note we explain where the variable substitutions come from, and 
provide the results from an illustrative example analysis. 
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2. Governing equation for the transport of heat in the subsurface 
 
If we neglect internal sources and sinks and assume full saturation, the statement of 
conservation of heat in the subsurface can be written as: 
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Terms: 
 
H  heat content; 
T  temperature; 
T0  reference temperature; 
qi  Darcy flux; 
cw  specific heat of water; 
ρw  density of water; 
λ  conductivity; 
Dij  dispersion coefficient tensor; and 
θ  saturated water content (porosity). 
 
Several references denote the product cwρw as Cw, the heat capacity of water. 
 
The left-hand side of the conservation statement represents the rate of change of heat 
content per unit volume of porous medium.  The terms on the right-hand side represent 
the divergence of the convective, conductive and dispersive heat fluxes, respectively. 
 
The heat content can be expanded as: 
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Substituting into the statement of heat conservation yields: 
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This is the governing equation for heat transport. 
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The form of the governing equation for heat transport appears relatively complex, but the 
interpretation and specification of the parameters is straightforward.  The governing 
equation can be simplified if we define a thermal retardation factor: 
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If we divide the governing equation through by w wcθ ρ  we obtain: 
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Finally, let us write the governing equation in terms of the relative temperature U, 
defined as T-T0: 
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This form is very similar to the governing equation for solute transport: 
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The following processes are analogous for the transport of heat and solutes in the 
subsurface: 
 

• Thermal retardation ↔ Retardation 
• Thermal convection ↔ Advection 
• Thermal conduction ↔ Diffusion 
• Thermal dispersion ↔ Dispersion 
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3. Example uncoupled calculations 
 
We examine the solution of Coats and Smith (1964) that Ward et al. (1984) use as a 
benchmark solution for the coupled numerical heat transport code SWIFT. 
 
The governing equation for the uncoupled one-dimensional transport of heat in a steady, 
uniform flow field is: 
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Subject to: 
 

( ) 0,0T x T=  

( ) 10,T t T=  

( ) 0,T t T∞ =  
 
Ward et al. (1984) confirm that the results of the Coats and Smith (1964) solution can be 
matched with the SWIFT code.  In this example we show that the results can also be 
matched using an analogous analytical solution for solute transport. 
 
If we define the following transport parameters can be written as: 
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and define the relative concentration as: 
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the governing equation for heat transport becomes: 
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Dividing through by R and designating v’ = q/R and D’ = D/R, the governing equation 
becomes: 
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In terms of the relative concentration, the boundary and initial conditions become: 
 

( ) 0,0c x c=  

( )0, 0c t =  

( ), 0c t∞ =  
 
Ogata and Banks (1961) presented the solution for this solute transport problem. 
 
Input parameters 
 
Ward et al. (1984) assume the following parameter values for their calculations. 
 

Parameter Value 
Darcy flux, q 3.53×10-7 m/s 
Saturated water content (Porosity), θ 0.10 
Specific heat of water, cw 4185 J/kg-°C 
Density of water, ρw 1000 kg/m3 
Specific heat of rock, cr 1254.7 J/kg-°C 
Density of rock, ρr 1602 kg/m3 
Longitudinal dispersivity, αL 14.4 m 
Thermal conductivity, λ 2.16 J/s-m-°C 
Initial temperature, T0 37.78°C 
Influent temperature, T1 93.33°C 

 
 
Intermediate calculations 
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Results 
 
The results for the heat transport solution (solid line: Coats and Smith, 1964) and the 
solute transport solution (points: Ogata and Banks, 1961) are plotted below.  The results 
are identical, confirming that the interpretation of the change of variables for heat 
transport is correct.  
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