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ABSTRACT 
 

The inverse problem in groundwater modeling is often made numerically tractable and computationally 
practical by estimating only a small fraction of the many unknown system parameters. However, this 
parsimonious approach restricts the solution of the inverse problem to a pre-determined subspace of the 
true parameter space. To reflect detailed local variations in hydraulic conductivity or recharge, it may be 
desirable to estimate a very large number of parameters during calibration, which requires an inversion 
technique that can accommodate highly parameterized models. The least-squares QR (LSQR) 
decomposition is an iterative solution method that can solve for many hundreds or thousands of 
parameters.  LSQR has been used successfully in seismic tomography inversion problems.  As an 
iterative method, LSQR can solve sparse and dense inverse problems of the form Ax=b using 
significantly less computer storage than direct solution methods.  We test the applicability of the LSQR 
method for solving the inverse problem for groundwater flow using a synthetic model and compare results 
with those obtained using the more commonly employed method, the singular value decomposition 
(SVD).  Parameter sensitivities are calculated using forward differences and the adjoint-state method. 
 

INTRODUCTION 
 
The inverse problem in groundwater modeling is often posed as a parsimonious one by estimating a 
small fraction of the many unknown system parameters. Difficulties and limitations of this approach are 
well known (e.g. Moore and Doherty 2005, deMarsily et al. 2005). The development of computationally 
efficient methods for calculating parameter sensitivities (Townley and Wilson 1985) combined with the 
application of regularization methodologies (Engl et al. 1996; Tonkin and Doherty 2005) suggests that the 
rapid and stable solution of large groundwater inverse problems is within reach and parsimony may not 
be the ‘norm’ in model parameterization for much longer.  However, the solution of highly-parameterized 
inverse problems in the least-squares sense using the approach common to most programs - direct 
matrix inversion – suffers enormously in the presence of round-off error and other sources of noise.  The 
focus of this paper is the application of LSQR to the calibration of a MODFLOW2000 (Harbaugh et al. 
2000) model and a comparison with SVD.  It is important to note that large inverse problems (100,000 
parameters) are routinely solved in many applications including seismic tomography.  This paper 
introduces readers to the theory behind the SVD and LSQR methods and then illustrates their application 
using a simple synthetic groundwater flow model.  Discussions focus on the contrasting computational 
burden, convergence behavior, and parameter estimates of the two methods for the simple case. The 
analysis described herein is one step in ongoing research examining the applicability and versatility of the 
LSQR decomposition technique. 
 

METHODS EMPLOYED 
 
The linear least squares inverse problem can be illustrated by: 
 
 minimize |Ax - b| (1)
 
where A is a matrix of m rows and n columns, x is an n-row vector of parameters, and b is an m-row 
vector of observations. In non-linear problems the solution is obtained through the iterative formation and 
solution of a (local) linear approximation to the non-linear problem.  In non-linear models, the parameter 
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upgrade vector, ∆x, is often calculated through the iterative minimization of a residual sum-of-squares 
objective function (phi) using the direct solution of the normal equations: 
 
 ∆x = (ATA)-1ATr (2)
 
where r lists the residuals for the current parameter set, T indicates the matrix transpose, and (–1) 
indicates the matrix inverse. Each linearization requires the construction of A, which typically forms the 
most computationally intensive aspect of the process (Carrera et al. 1990).  While matrix inversion is 
effective for well-conditioned, typically over-determined systems comprising a small number of 
parameters, if ATA is near-singular it cannot be inverted and the likelihood of a near-singular ATA 
increases as n increases.  Alternative methods for solving (1) are the SVD and the LSQR methods. 
 
SVD 
 
Singular value decomposition is a direct solution method that decomposes an arbitrary matrix B into: 
 
 B = USVT (3)
 
where U and V contain the left and right eigenvectors of B, respectively (Lawson and Hanson 1995; 
Anderson et al. 1999).  The singular value decomposition is general in the sense that it can be applied to 
any m × n matrix.  The first phase of the SVD is to compute U and V such that USV is bi-diagonal.  In the 
special case of the square symmetric positive-definite matrix, B=ATA, S is diagonal and lists the n 
singular values or eigenvalues of ATA.  In addition the n column vectors of matrix V are the eigenvectors 
of ATA.  Because ATA is symmetric positive semi-definite, its eigenvectors are orthogonal.  Truncated 
singular value decomposition (TSVD) is a mechanism for determining ∆x from the k most dominant 
eigenvectors, where k < n is a subset of the full complement of eigenvectors.  The TSVD is then not an 
exact decomposition of B but represents the closest approximation that can be achieved by a matrix of 
rank k.  The eigenvectors represent unique weighted combinations of parameters that influence the 
calculated observation values.  The eigenvalues indicate the magnitude of the influence.  Therefore, the 
eigenvectors associated with small eigenvalues have little influence on the calculated observations and 
can be safely neglected.  As a corollary, because they have a small influence on the observation values, 
the eigenvectors are very susceptible to noise in the data.  Errors in the estimates of these vectors can 
significantly degrade the parameter distribution.  Given matrix A of size m-by-n the SVD requires O(m x 
n)2 or O(n)3 operations depending on the initial factorization approach taken (e.g., the Givens or 
Householder approaches).  SVD also requires full storage of the matrices U, V and the vector S.  
 
LSQR 
 
LSQR (Paige and Saunders 1982a,b) is an iterative solution method related to conjugate-gradient (CG) 
methods.  LSQR can be shown to be algebraically equivalent to applying the symmetric CG method to 
the normal equations, but possesses superior numerical properties when A is ill-conditioned that can lead 
to more rapid and accurate convergence. The LSQR was developed for solving large sparse problems, 
but has been applied to the solution of dense problems such as described in this paper.  The LSQR is 
applicable to the solution of the non-symmetric problem Ax=b or for linear least squares of the form (1). 
When used to solve (1) the sensitivity matrix A is only used to compute matrix-vector products. The LSQR 
is based on the Lanczos process and the bi-diagonalization procedure of Golub and Kahan (1965). 
Variants of the Golub-Kahan-Lanczos bi-diagonalization procedure are employed in some 
implementations of the SVD, illustrating the relation between these approaches.  However, the LSQR 
uses an iterative method to approximate the solution, with the number of iterations required to reach 
convergence depending on the condition number of the problem and the desired accuracy.  For well 
conditioned A (m x n), the LSQR can theoretically solve the system in n operations.  However, where A is 
ill-conditioned preconditioning of O(n) is required and the number of required operations increases 
linearly with n.  A satisfactory solution may be obtained sooner, since the LSQR captures spectral 
components of the solution in order of increasing frequency.  Therefore, initial iterates are ‘smoother’ than 
later iterates and can be described as regularized in a manner comparable with TSVD.  Since the least-
squares solution is obtained through matrix-vector multiplications using matrix A and matrix ATA is never 
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formed and(or) decomposed, the condition number of the inverse problem is lower than when operating 
on the normal equations as is the case with the implementation of the SVD used here (Subroutine 
DGESVD, Anderson et al. 1999).  CG-like methods are appealing due to their low storage requirements 
and the LSQR requires storage only of A and of two vectors of size n and m respectively, unless the 
Lanczos vectors are stored for later use.  Under certain circumstances the ortho-normal vectors formed in 
the LSQR solution process may approximate the eigenvectors calculated using the SVD (Yao et al. 
1999).  

 
2D CHECKERBOARD TEST CASE 

 
A simple two-dimensional model was constructed with 32 
rows and 32 columns.  Constant-head boundaries were used 
on the left and right sides of the model with no-flow along the 
top and bottom.  Two zones of hydraulic conductivity were 
evenly distributed throughout the model in a checkerboard 
pattern (Figure 1).  The lighter zones were assigned a 
hydraulic conductivity of 1 ft/day and the darker zones 100 
ft/day.  Each zone is 4 rows by 4 columns.  The resulting 
head distribution is illustrated in Figure 1.  To test LSQR, the 
simple model was calibrated to heads using hydraulic 
conductivity as the only variable parameter.  Each model cell 
was used as a parameter and each node-center as a head-
observation, resulting in 1024 parameters and 1024 
observations.  The starting value for each parameter was 
calculated as a random fraction (up to ±50 %) of the true 
value (Figure 2).  The sensitivity matrix was calculated using 
forward-differences with an increment of 1% of the parameter 
value.  Parameters were restricted to values between 0.0001 
and 200.0 and could not change by more than a factor of 
10.0 within any optimization iteration.  Formal regularization 
was not used and LSQR worked with the sensitivity matrix A 
directly, not the normal matrix (ATA). 
 

 

Figure 1.  Actual hydraulic 
conductivity distribution  
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Figure 2.  Starting hydraulic conductivity 
distribution 

Figure 3.  LSQR calibrated hydraulic 
conductivity distribution 
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LSQR required 63 optimization iterations - a total 
of 64,575 forward model executions - to reduce 
phi from 7.6266 to 0.0002.  The resulting 
hydraulic conductivity distribution is shown in 
Figure 3.  This checkerboard model was 
calibrated with the same parameters, 
observations, and parameter change limitations, 
using SVD as employed in PEST (Doherty 2005) 
with one exception: SVD operates on the normal 
matrix ATA and it is therefore expected that the 
SVD encountered greater noise in obtaining a 
solution. The SVD was implemented both with 
and without truncation. The SVD truncation level, 
k, was set by specifying the ratio of highest-to-
lowest acceptable singular value (variable 
EIGTHRESH).  Initially EIGTHRESH was set to 1.0E-4, approximately 200 singular values (SVD 200) 
were used in the solution, and phi was reduced to 0.0015 in 3 optimization iterations (3076 model runs) 
(Figure 5).  By reducing EIGTHRESH to 1.0E-10, approximately 600 singular values (SVD 600) were 
used in the solution and in 4 optimization iterations (4101 model runs) phi was reduced to 0.0004; the 
resulting parameter distribution is shown in Figure 6. The limited improvement demonstrates the minimal 
influence of eigenvectors associated with small eigenvalues.  It is worth noting that the ratio of the highest 
to lowest singular values in the full problem was 1.0E-25 and that when all 1024 singular values were 
used the problem was too ill-conditioned to obtain a solution.  The starting parameter vector had a 
variance of 0.09 while LSQR reduced this to 0.02 and SVD 200 to 0.06. The variance resulting from SVD 
600 actually increased to 0.13 owing to two parameters with a relative residual value of less than -6.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After the sensitivity matrix was calculated, it took LSQR less than 1.5 minutes to solve the linear system 
while SVD 200 took about 2.5 minutes and SVD 600 about 4.5 minutes.  While this result is expected, it 
can be misleading given the number of optimization iterations required to reduce phi for LSQR compared 
with SVD, as discussed later.  All simulations were completed on a laptop computer with a P4 3.0 GHz 
CPU and 1.5 GB of RAM. 
 

 
 

Figure 5.  SVD 200 calibrated conductivity 
distribution 

Figure 6.  SVD 600 calibrated conductivity 
distribution 

Figure 4.  Histogram of relative parameter  
residuals 
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DISCUSSION AND CONCLUSIONS 
 

The LSQR method shows promise in solving large groundwater inverse problems as demonstrated by the 
reduction in the residual sum of squares and variance in the parameter residuals compared with SVD 200 
and SVD 600.  At the time this paper was written an attempt to include all 1024 singular values in the 
SVD solution was not successful but is the subject of ongoing research.  In addition, attempts will be 
made to use LSQR in the solution of the normal equations ATA to determine how it behaves with the 
additional noise.  It is believed that the ill-conditioning of the system explains why LSQR required more 
optimization iterations in this test.  There is some inherent damping in LSQR due to its internal stopping 
criteria and investigations of this are part of ongoing research.  Also, even though the maximum a 
parameter could change was 10, neither of the SVD runs had a parameter change by more than 2.5 
where as LSQR changed a parameter by 10 each optimization iteration.  Given the similarities in the core 
processes underlying both SVD and LSQR and the success of the regularized inversion approach 
embodied in TSVD, it is believed that LSQR will demonstrate similar success with the additional 
advantage of reduced noise and reduced computational burden. This in turn may support the estimation 
of many more parameters, allowing more complex and larger models to be parameterized with greater 
confidence, and allowing the inverse process itself to identify where heterogeneity must exist, further 
reducing the necessity of relying on a-priori parsimony. 
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