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Abstract

Using one- and two-dimensional homogeneous simulations, this paper addresses challenges

associated with sensitivity analysis and parameter estimation for virus transport simulated using

sorptive–reactive processes. Head, flow, and conservative- and virus-transport observations are

considered. The paper examines the use of (1) observed-value weighting, (2) breakthrough-curve

temporal moment observations, and (3) the significance of changes in the transport time-step size.

The results suggest that (1) sensitivities using observed-value weighting are more susceptible to

numerical solution variability, (2) temporal moments of the breakthrough curve are a more robust

measure of sensitivity than individual conservative-transport observations, and (3) the transport-

simulation time step size is more important than the inactivation rate in solution and about as

important as at least two other parameters, reflecting the ease with which results can be influenced by

numerical issues. The approach presented allows more accurate evaluation of the information

provided by observations for estimation of parameters and generally improves the potential for

reasonable parameter-estimation results.
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1. Introduction

Using numerical methods to assess the potential for virus contamination of

groundwater drinking-water supplies is challenging for many reasons including: (1)

virus contamination typically occurs when the rate of transport from the virus source is

relatively fast, which reflects advection-dominated flow, (2) viruses remain a health

threat at concentrations that typically can be more than eight orders of magnitude less

than the source concentration, and (3) accurate parameter values can be difficult to

determine. Variability of site conditions suggests that a site-specific assessment of the

parameter values controlling virus transport is necessary to produce accurate transport

predictions (Bales et al., 1997). Sensitivity analysis can be used to determine the relative

importance of each parameter so that characterization efforts focus on reducing

uncertainty of the most important parameters, providing the most efficient improvement

in prediction accuracy. However, modeling the sorptive–reactive processes characteristic

of virus transport under the typically advective-transport conditions and over many orders of

magnitude of observed concentrations can be problematic, complicating sensitivity analysis

and parameter estimation.

Sensitivity analysis and parameter estimation are already complicated by parameter

insensitivity and correlation (Poeter and Hill, 1997), and the potential for introducing a

bias through the choice of weighting (Anderman and Hill, 1999). In fact, the considerable

potential for misuse and misinterpretation has led to publications focused entirely on

developing a systematic approach to guide the calculation and interpretation of parameter

sensitivities and estimates (e.g., Hill, 1998). The objective of this paper is to address issues

specific to sensitivity analysis and parameter estimation of sorptive–reactive transport,

improving the potential for accurate calculation of virus-transport parameter sensitivities

and parameter estimates. Although presented in the context of the approach suggested by

Hill (1998), the analysis and suggestions presented in this work are broadly applicable to

typical field site investigations.

The best method for calculating parameter sensitivities depends on the application. For

example, Yeh (1986) notes that the adjoint-state method requires less execution time for

situations where the number of parameters is greater than the number of observations while

the perturbation method and the more accurate sensitivity-equation method, which are often

equivalent in terms of execution time, require less execution time if the number of

observations is greater than the number of parameters. The relative execution time of each

method can also depend on the simulation. Of the methods mentioned perturbation methods

are most versatile because they do not require changes to the code. They can, however, be

more susceptible to some types of numerical difficulties. In this work, perturbation methods

are used, providing a versatile approach, and the associated numerical difficulties are

addressed.

Assessment of potential virus contamination typically includes many observations of

several types including heads, flows, and conservative and non-conservative transport

observations. The information from the various types of observations aids understanding

of the physico-chemical system and the processes controlling virus transport. Previous

virus-transport sensitivity analysis has focused on more limited types of observations

related to virus transport. For example, Yates (1990) used analytical methods to assess
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parameter sensitivity using the maximum virus concentration, Cmax. From a regulatory

perspective Cmax may be useful, but examining only Cmax emphasizes parameters

controlling the breakthrough curve (BTC) peak and does not provide any information on

the parameters controlling the tail of the BTC. Campbell-Rehmann and Welty (1999)

provides an assessment by comparing the effect of parameter adjustments on virus BTCs.

For reactive transport, Tebes-Stevens and Valocchi (2000) calculated sensitivities for a

variety of observation types but analyzed results using a dimensional sensitivity,

precluding the possibility of comparing the information contributed from different types

of observations. This work uses a set of typical observations collected for assessing the

potential for virus contamination of a drinking water supply: observations of head, flow,

and conservative and virus transport. This paper uses the methods of Hill (1998) to

produce a set of dimensionless scaled sensitivities, assess relative parameter importance

and, accounting for observation uncertainty, identify which observations and types of

observations provide the most information.

The impact of changes to the transport step size (TSS) for simulation of sharp

concentration fronts, typical of problematic virus transport situations, is examined in this

work. Of concern is that when perturbation methods are used to calculate sensitivities,

minor concentration variations associated with sharp fronts are exaggerated by the finite-

difference approximation used to calculate sensitivities. This paper introduces the

concept of defining the TSS as a parameter and using its sensitivity to indicate the

significance of other parameters relative to the significance of numerical issues related

to TSS.

Accounting for virus concentrations over multiple orders of magnitude is required

because viral contamination remains a significant health threat down to very low

concentrations (Yates, 1990). Under such circumstances, computing accurate sensitivities

is problematic and requires addressing a number of issues associated with numerical

precision, weighting and observation uncertainty. While assessing the impact of parameter

adjustment on BTCs (e.g., Campbell-Rehmann and Welty, 1999), or evaluating a single

observation (e.g., Yates, 1990) can provide insight, these methods of assessing impact do

not make use of the information from observations over the entire range for which they are

significant. This paper examines weighting, in the context of observations significant over

many orders of magnitude, to develop and present an approach for weighting virus-

transport observations.

The weights on observations reflect observation uncertainty, and often equal or are

proportional to one divided by the variance of the observation error (Draper and Smith,

1998; Hill, 1998). Different types of observations, for example hydraulic heads or tracer

concentrations, typically have weights of different values. Depending on the observation

type, weights may be fixed or variable. Head observations typically have fixed weights

because the observations are significant over just a few orders of magnitude.

Concentration observations significant over many orders of magnitude require the

weight to depend on the concentration (e.g., Barlebo et al., 1998; Wagner and Gorelick,

1986). This work includes both fixed and variable weights and examines issues related

to the uncertainty associated with different types of observations, especially for highly

advective systems with transport observations that are significant over many orders of

magnitude.
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For observations that span many orders of magnitude, such as concentrations, weights

for sensitivity analysis or parameter estimation are often based on either the observed

values (e.g., Gorelick et al., 1983), or the simulated values (e.g., Wagner and Gorelick,

1987). Anderman and Hill (1999) identified a bias when using the observed values for

calculating weights. This work examines advantages and disadvantages of using the

observed vs. simulated values when calculating weights.

To avoid issues associated with the variability of individual concentration observations

other publications have used spatial or temporal moments of observed concentrations. For

example, Harvey and Gorelick (1995) used quantiles, representing the proportion of total

mass having passed a sampler, as a more robust representation of transport information.

This paper uses temporal moments of conservative-transport BTCs to obtain conservative-

transport information from the typically sharp-front BTCs and improve the potential for

calculating accurate sensitivities.

The intent of this paper is to examine the process of obtaining perturbation-method

sensitivities and parameter estimates. Using the standard equations for advective–

dispersive–sorptive–reactive transport, this paper demonstrates how sensitivity analysis

and parameter estimation for the sorptive–reactive system considered can be successfully

accomplished. The simplicity of the system evaluated allows identification of issues

associated with the process which could be easily overlooked or incorrectly evaluated in

more complex systems. This work focuses on the details of the process, some of the many

options involved, and how to improve on the process. Results of applying the process are

discussed briefly in this paper, and are presented in detail in Barth and Hill (in review).

The process is applicable to a wide range of sorptive–reactive constituents. This work is

unique in the range of issues considered including (1) weighting that insures importance of

virus-transport observations over many orders of magnitude, (2) use of several types of

observations, and (3) assessment of the numerical issues resulting from (1) and (2). The

methods used in this work for calculating sensitivities and estimating parameters are

versatile and directly applicable to virtually any numerical model.
2. Methods

A brief overview of the methods used to simulate virus transport, conduct sensitivity

analysis, and estimate parameter values are provided in this section. The reader is referred to

other work for additional information. Included are (1) the equations used to represent virus

transport, (2) details of the numerical methods, grids and generation of observations, (3)

sensitivity-analysis statistics and weighting, and (4) options for the parameter-estimation

methodology.

2.1. Equations

This work considers advection, dispersion, sorption, and reaction as the primary

mechanisms affecting virus transport using the following equations. Using these

mechanisms, virus transport can be simulated as a sorptive, reactive solute using the

advective–dispersive equation (e.g., Corapcioglu and Haridas, 1984; Tim and Mostaghimi,
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1991; Schijven et al., 1999), which is also applicable to a wide range of sorptive–reactive

solutes.

BC

Bt
¼ B

Bxi
Dij

BC

Bxj

� �

dispersion

� B

Bxi
viCð Þ

advection

� b
h

C � C
�

Kd

� �

non � equilibrium sorption

� k1C
inactivation

i; j ¼ 1; 2; 3

ð1aÞ

BC
�

Bt
¼ b

qb

C � C
�

Kd

� �

non � equilibrium sorption

� k2C
�

inactivation
ð1bÞ

vi ¼ � K

h
dh

dxi
ð1cÞ

Dl ¼ alyþ D4: ð1dÞ

Conceptually, the relationship between the dispersion coefficient, dispersivity, velocity,

and molecular diffusion is summarized by Eq. (1d), where the subscript l indicates the

curvilinear coordinate direction taken along a flowline (Freeze and Cherry, 1979). A full

expansion of the fourth order dispersion coefficient can be found in many subsurface

transport texts (e.g., Zheng and Bennett, 2002). The following list defines the terms used

in Eqs. (1a)–(1d).

C Concentration in solution [ML�3]

C
–

Adsorbed concentration [MM�1]

t Time [T]

x Spatial dimension [L]

Dij Dispersion coefficient [L2T�1]

vi Interstitial velocity [LT�1]

h Porosity

qb Bulk density [ML�3]

b Sorption rate [T�1]

Kd Sorption distribution coefficient [L3M�1]

k1 Inactivation rate in solution [T�1]

k2 Adsorbed inactivation rate [T�1]

K Hydraulic conductivity [LT�1]

al Dispersivity [L]

h Hydraulic head [L]

D* Molecular diffusion [L2T�1]

From the above list, this paper evaluates the sensitivity of seven parameters (K, h, al, b,
Kd, k1, k2) that control transport for a given set of boundary conditions. In the advection-
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dominated systems examined in this work D* does not typically have a significant impact,

and qb is typically obtained from independent measurements.

2.2. Numerical simulation

Sorptive–reactive transport is simulated using double precision versions of the

groundwater flow program MODFLOW96 (Harbaugh and McDonald, 1996) and the

multi-species, sorptive–reactive capabilities of MT3DMS (Zheng, 1998). Double precision

is necessary to reduce the effects of round-off error on the sensitivity-analysis and

regression results (Poeter and Hill, 1998).

MODFLOW’s PCG2 solver (Hill, 1990) was used to solve for heads and flows. As is

common for advection-dominated systems, the flow-model solver convergence criteria

significantly affected the calculated concentrations and therefore the associated sensitiv-

ities. Setting these convergence criteria on the same order as the number of significant

digits used in the numerical solution resolves this issue.

MT3DMS uses operator splitting so that the advective term is calculated separately

from the other terms. The Total Variation Diminishing (TVD) method was used to solve

the advection term, and the standard explicit method was used to solve the other terms.

The implicit method was not used because this investigation targets simulations that

include sharp fronts. The very small time-step size necessary for the implicit solver to

represent accurately the sharp front eliminated its potential advantages.

2.2.1. One- and two-dimensional grids

In this work, perturbation-based methods of sensitivity analysis and parameter

estimation are performed using simulations of one- and two-dimensional systems. The

one-dimensional system is used to identify numerical-solution issues. The two-dimen-

sional system is used to demonstrate the precautions needed to insure accurate sensitivities

and parameter estimates when simulating flow and transport in multi-dimensional systems,

and to examine longitudinal spatial trends in sensitivities.

The one-dimensional grid consists of 160 finite-difference cells, each 0.0635 m long.

The overall transport distance is 10.16 m. Constant-head boundaries are imposed. The

flow system is steady state. An initial concentration, representing a finite duration injection

pulse immediately after injection, is located at the upgradient boundary.

The two-dimensional grid consists of 40 rows and 160 columns. Constant-head

boundaries are imposed at each end, and no-flow boundaries along the length of the

system. Each finite-difference grid cell measures 0.0254 by 0.0635 m, producing a domain

just over 1 m tall and 10.16 m long (Fig. 1). The source is centered along the upgradient

boundary, spanning 0.254 m.

2.2.2. Generating hydraulic head, flow and concentration observations

To insure a controlled situation in which sensitivity analysis and parameter estimation

can be evaluated most clearly, observed quantities are generated using the constructed one-

and two-dimensional models. For the 1D grid, head, conservative-solute, and virus

observations are from eight locations. The longitudinal distances are the same as for the

two-dimensional grid shown in Fig. 1. For both the 1D and 2D grids, bulk flow through
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numbered sampler transects correspond to wells sampled by Schijven et al. (1999).
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the system is used as the single flow observation. In the 2D grid, each of the eight

sampling transects provide head and transport observations at five locations. Individual

transport observations are comprised of the flux-averaged concentration from four finite-

difference cells. Symmetry of the sampler layout about the longitudinal centerline helped

identify numerical artifacts that are often manifested as asymmetric simulated values and

sensitivities.

Parameter values in Table 1 are the average values from virus transport field

experiments (Schijven et al., 1999) and were used in the forward runs to produce noiseless

observations of heads, flows, and conservative and virus concentrations. The field

experiments consisted of introducing viruses and a conservative solute into a dune

recharge system in Castricum, the Netherlands. They determined the parameter values by

fitting observations with a one-dimensional model and by direct measurement.

For most simulations, noise is added to the simulated values to create the observations.

For flows and heads noise is added as:

yki; j ¼ ŷy ki þ rkR
k
i; j ð2Þ

where ŷi
k is the simulated value, ŷi,j

k is the dobservedT value, k indicates the observation

type (flow k= f, or head k=h), i is the observation number, rk is the standard deviation of

typical measurement error and, in this study, is the same for all observations of type k. For

this work the standard deviation of typical measurement error for heads and flows was
Table 1

Parameter values

Parameter Value

K, hydraulic conductivity (m day�1) 12a

a, dispersivity (m) 0.032a

h, porosity 0.35a

Kd, sorption distribution coefficient (m3 kg�1) 0.238a

b, sorption rate (day�1) 0.747a

k1, inactivation in solution (day�1) 0.075b

k2, inactivation adsorbed (day�1) 0.07a

TSS, transport step size (day) 0.01

a Estimated by Schijven et al. (1999).
b Measured by Schijven et al. (1999).
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calculated based on coefficients of variation of 0.001 and 0.005, respectively, reflecting

this investigation’s emphasis on the development of a process for calculating sensitivities

and parameter estimates. A process that would typically be less challenging to perform

consistently and accurately in the presence of increased noise, which would tend to

decrease the range over which concentration observations remained significant. As

discussed in the section on weighting, the weights associated with these fairly small

measurement errors can be quite large, and requires a well-developed approach to

generating sensitivities and parameter estimates. The value used for Rij is the jth set of

standard-normal random noise (James, 1994) generated for the ith observation. Eq. (2)

uses a fixed level of noise. The noise does not depend on the magnitude of the observation,

reflecting the fact that in this work observations such as heads and flows have a limited

range of variation.

Concentrations significant over many orders of magnitude require that noise added to

the concentrations is variable, proportional to the magnitude of the simulated value:

yci; j ¼ ŷyci 1þ CviR
c
i; j

� �
ð3Þ

where the superscript c identifies concentration observations, and Cvi is the coefficient of

variation for the ith observation. The coefficient of variation used for concentrations was

0.08. To avoid numerical and computational issues associated with zero-concentration

observations and their weighting, a detection limit equal to the concentration at which

viruses were no longer considered a health threat was included in the simulations; a

normalized concentration value of 10�8 was used, with concentrations normalized to the

initial concentration. Fig. 2 shows an example of observations before and after adding
Fig. 2. Generated concentration observations. Noise was added to simulated concentrations to create

concentration observations. The variance of the noise increased with concentration. Data shown is from Transect

6, sampler c, the middle sampler.
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noise, and effect of the detection limit. For a noiseless realization j=0 and Rij=0.0, so that

no noise is added. Noiseless realizations were used to detect numerical-solution issues that

could be obscured by the presence of noise.

2.2.3. Representing transport observations using temporal moments

Temporal moments of conservative-transport BTCs are used as an alternative form of

representing conservative-transport observations for two reasons. First, sensitivities

calculated for temporal moments are less susceptible to minor asymmetries and

variability associated with numerical errors that occur for conservative transport in

highly advective systems. Second, the BTC moments remain sensitive even when the

predicted conservative-transport BTC does not overlap the observed BTC, in which

case, as discussed in the results, the scaled sensitivities of individual concentration

observations are insignificant. This occurs because, in contrast to individual

conservative-transport observations, the objective-function contribution from temporal-

moment weighted residuals increases monotonically as the simulated BTC moves

farther from the observed, regardless of the separation between simulated and observed

BTCs.

This paper uses the normalized first moment (m1),

m1 ¼
M1

M0

where Mj ¼
Z l

0

t jyc x; tð Þdt and j ¼ 0; 1 ð4Þ

where t j is time raised to the power j, and yc(x, t) is concentration as a function of space

and time. The term m1 provides a lumped indicator of the mean arrival time. Noise is not

directly generated for moments, but is present due to the noise in the yc(x, t) values. In this

work the resulting variance of error in the moments is considered to be fixed: it is

independent of the value of the moment.

2.2.4. Individual concentration observations vs. temporal moments

In calculating m1, individual observations are not weighted, so the moments primarily

reflect the higher concentration conservative-transport observations. In this work, low

concentration conservative-transport observations do not contribute significantly in terms

of characterizing flow and transport. Therefore, the moments of conservative-transport

observations provide sufficient information for sensitivity analysis and parameter

estimation. In systems with a more dispersed or a multiple-peaked conservative transport

BTC, it may be beneficial to retain individual conservative-transport observations, or may

warrant a combination of the individual observations and moments.

Concentration observations of virus transport are used and weighted individually to

provide feedback over many orders of magnitude. The lower virus concentrations provide

significant information regarding reactive and sorptive transport parameters and the long

BTC tails tend to insure at least some overlap between the observed and simulated values.

The section on weighting discusses additional motivation for using conservative- but not

virus-transport BTC temporal moments. Examples demonstrating the issues encountered

calculating sensitivities using individual conservative-transport observations are summa-

rized in Section 3.
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2.2.5. Transport step size issues

Perturbation sensitivity methods allow complete flexibility so that any model input can

be treated as a parameter. In this work TSS is one of the parameters evaluated for its

potential to affect sensitivity analysis and parameter estimation results, and serve as an

indicator of the level below which other parameters will have limited significance for the

system simulated.

In most numerical transport simulators, including MT3DMS, the simulation-time

discretization, or TSS, is adjusted to balance stability, accuracy, and execution time

constraints. For advection alone adjusting TSS to keep the Courant Number (Cr=vDt/Dx)

less than 1.0 is usually sufficient to produce a stable solution with minimal numerical

dispersion. Transport with sorption and inactivation requires additional constraints to

insure that operator splitting mass-balance errors remain small (Kinzelbach et al., 1991;

Valocchi and Malmstead, 1992). For multiple solute species, including a species

experiencing non-equilibrium sorption and first-order irreversible reaction, MT3DMS

determines the largest value of TSS small enough to satisfy the constraints of all of the

components, TSS0, calculated as (Zheng, 2000):

TSS0V
1

1

DtADV
þ 1

DtDSP
þ 1

DtSSM
þ 1

DtRCT

ð5aÞ

DtADV, DtDSP, DtSSM, and DtRCT are defined as:

DtADVV
Cr

jvxj
Dx

þ jvyj
Dy

þ jvzj
Dz

� � ð5bÞ

DtDSPV
0:5

Dxx

Dx2
þ Dyy

Dy2
þ Dzz

Dz2

� � ð5cÞ

DtSSMV
h
qs

ð5dÞ

DtRCTV
1

k1þ k2
ð5eÞ

where vx, vy, vz, Dxx, Dyy, Dzz, Dx, Dy, Dz are the velocity, dispersion coefficients, and

numerical grid-cell size in the x, y, and z coordinate directions, respectively, and qs is the

sink or source volumetric flow rate per unit volume of aquifer. Changes in parameter

values K, h, al, k1, or k2 may cause a change in TSS0, resulting in minor changes to

simulated transport but significant changes in sensitivities. Regression runs, where

parameters may be updated to values significantly different than their starting values, or

sensitivities calculated using perturbation methods (e.g., Poeter and Hill, 1998) can be

adversely affected. As shown below, the problem becomes more severe for simulations
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with high Peclet numbers (Pe=Dx/alN2) because simulated concentrations may change

dramatically along sharp fronts for small changes in TSS.

2.3. Sensitivity analysis

Sensitivity analysis is used here to identify the information observations contain for

estimating parameters, insensitive and correlated parameters that are likely to cause the

regression to perform poorly, and to diagnose difficulties and limitations of the parameter-

estimation results (Hill, 1998).

2.3.1. Calculation of sensitivities

Sensitivities were calculated using UCODE (Poeter and Hill, 1998). Centered-

difference sensitivities were used and are calculated as,

Bŷyi
Bbj

c
ŷyi b

P
þ Db

Pj

� �
� ŷyi b

P
� Db

Pj

� �
2Db

Pj

ð6Þ

where bj is the jth parameter, Db�j is a vector with one nonzero term, and the subscript j

indicates the jth component in Db�j equals Dbj, the amount that the jth parameter value is

perturbed. It is possible to calculate an optimal perturbation size (e.g., Dennis and

Schnabel, 1996, p. 99), but this investigation uses a perturbation size fixed at 1% of the

parameter value, as suggested in the UCODE documentation (Poeter and Hill, 1998, p.

33). Trial and error evaluation of perturbation-size impact confirmed that a 1%

perturbation size was appropriate for this investigation.

2.3.2. Statistics of the sensitivity analysis

In this work, ŷi and b�j can represent a range of observations and parameters of different

types and units. As a result, the sensitivity values calculated using Eq. (6) in general are

not directly comparable. To determine how much information the observations provide

towards estimating the different parameters, scaled sensitivity measures are used,

including dimensionless scaled sensitivities (dss) and composite scaled sensitivities (css)

(Hill, 1998).

For a diagonal weight matrix (x�), the dimensionless scaled sensitivities for observation

ŷi and parameter bj are calculated as,

dssij ¼
Bŷyi
Bbj

� �
bjx

1=2
i ð7Þ

where xi
1/2 is the square root of the weight of observation ŷi, and in this work equals

one divided by the estimated standard deviation of the observation errors, as discussed

below. Dimensionless scaled sensitivities are used to evaluate the importance of

individual observations in the estimation of each parameter. The scaling provided by bj
and xi

1/2 allows comparison of sensitivities despite different units and observation

uncertainty.
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Composite scaled sensitivities (css) are calculated for each parameter as,

cssj ¼

XND
i¼1

dssij
� �2					bP
ND

2
66664

3
77775

1=2

ð8Þ

where ND is the number of observations and can include all head, flow, conservative-

tracer, and virus transport observations, or a subset that could be based on observation

type, location, and/or timing. The value of cssj indicates the total information provided by

the ND observations for the estimation of the jth parameter.

For this work, css values are calculated for concentrations from each sampler or transect

of samplers. In the one-dimensional system temporal moments of conservative transport

BTCs and virus BTCs, from each location, are composited with the one system flow

observation to produce css’s for each sampling location. In the two-dimensional system,

conservative transport first temporal moments and virus BTCs from the samplers in each

of the eight transects are composited with the one flow observation and head observations

from the entire system, resulting in eight css values for each parameter. This compositing

is similar to what would be done for a site investigation, allowing assessment of spatial

trends in transport-observation importance, and reflects typical field-site investigation

circumstances: an abundance of head observations and a relatively limited number of flow

observations and concentration-observation locations.

The sensitivity of the simulation results to the value of TSS can be determined by

treating TSS as a parameter. Sensitivities are calculated as

Bŷyi
BTSS

c
ŷyi b

P
þ Db

PTSS

� �
� ŷyi b

P
� Db

PTSS

� �
2Db

PTSS

ð9Þ

where Db�TSS is a vector with one nonzero term, which equals DbTSS, the amount that TSS

is perturbed.

2.3.3. Weighting issues and approaches

For a valid regression weights need to be proportional to one divided by the variance of

the observation error (ri
2) (Draper and Smith, 1998, p. 222). In this work, as suggested by

Hill (1998), an equality is used so that

xki ¼
1

r2
ki

where i ¼ 1 N ND: ð10Þ

In this work, the value rki

2 is known because the observations are synthetic, created with

known error variances and there is no model error to consider (Hill and Tiedeman, 2003).

Hill (1998) discusses methods for estimating rki

2 for real data sets. For each observation of

head (k=h), flow (k= f ), and temporal moments of the conservative-transport BTCs (k=m)

a fixed weight is used because, in this work, the observations vary and are significant over a

limited range.
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Conservative- and virus-transport concentrations use a variable weight because rci

2 is

proportional to the concentration. Weights ideally would be calculated using the true

concentration values, that is,

xci ¼
1

Cviỹy
c
ið Þ2

where i ¼ 1 N nc ð11Þ

where nc is the number of observations with weights proportional to their value, Cvi is the

coefficient of variation, and ỹi
c is the true concentration. Incorporation of a detection limit

avoids very small concentrations and the result that Eq. (11) would become excessively

large. The value of ỹi
c is, in general, unknown and is approximated using either the

observed (e.g., Keider and Rosbjerg, 1991) or simulated value (e.g., Wagner and Gorelick,

1986). Anderman and Hill (1999) compare the two approaches.

In an alternative, equivalent method the concentration residual is scaled by the observed

or simulated concentration and weights are equal to 1/Cvi
2 (Van Rooy et al., 1989; Barlebo

et al., 1998). Van Rooy et al. (1989) and Barlebo et al. (1998) also include a parameter

estimation scaling factor, discussed below, in the objective function that changes the

relative weighting of groups of observations.

2.4. Parameter estimation

Parameters are estimated by quantifying the fit between observed and simulated values

and minimizing with respect to the parameter values. Here, a weighted least-squares

objective function, S(b–), quantifies the fit as:

S b�r

� �
¼ y� � ŷy� b�r

� �h iT
xP y� � ŷy� b�r

� �h i
: ð12Þ

The weight matrix, x�, and observed- and simulated-value vectors, y
–

and ŷ(b–),

respectively, include terms for all the observations, and the subscript r indicates the

parameter estimation iteration number. The objective function is minimized using a

modified Gauss–Newton method (e.g., Seber and Wild, 1989; Sun, 1994) as described in

Hill (1998).

Several investigations (e.g., Barlebo et al., 1998; Keider and Rosbjerg, 1991; Van Rooy

et al., 1989; Carrera and Neuman, 1986) use a scaling factor in an approach referred to by

Bard (1974, p. 62) as stagewise optimization to adjust the relative importance of different

observation types. In this work, using UCODE (Poeter and Hill, 1998), the objective

function is divided into two components,

Sk b�r

� �
¼

Xnk
i¼1

xki

�
yki � ŷyki b�r

� ��2

ð13Þ

and

Sc b�r

� �
¼

Xnc
j¼1

xcj ycj � ŷycj b�r

� �� �2

ð14Þ
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where nk and nc are the number of observations with fixed weights (in this work, heads,

flows and moments) and variable weights (in this work, concentrations), respectively, and

Sk(b--r) and Sc(b--r) represent the fixed- and variable-weight components, respectively, of the

objective function,

S b�r

� �
¼ Sk b�r

� �
þ Sc b�r

� �
: ð15Þ

The ratio of relative contributions is used as the basis for a scaling factor v,

vr�1 ¼

Sk b�r�1

� �
nk

Sc b�r�1

� �
nc

ð16Þ

where r�1 indicates the use of values from the previous iteration. The values of xki
are as

indicated in Eq. (10), xcj
is determined at each iteration as:

xcj ¼
vr�1

Cvjŷycj

� �2
ð17Þ

which, substituted into Eq. (14) results in,

Sc b�r

� �
¼

Xnc
j¼1

vr�1

Cvjŷycj

� �2
ycj � ŷycj b�r

� �� �2

ð18Þ

reflecting the dependence of the current-iteration objection function value on the results of

the previous iteration.

The objective-function scaling parameter, vr�1, adjusts the contributions to the

objective function so that the average contribution of Sk(b--r) is comparable to the average

contribution of Sc(b--r). This adjustment is intended to improve the regression’s potential to

estimate parameters based on the information from all observations, reducing the chance

that one group of observations will dominate the value of the objective function. While

serving a practical role during the regression, it is important to consider the following two

issues. First, the value of vr�1 changes with successive iterations. Oscillations in vr�1 can

cause large changes in weighting and the objective function surface at each iteration of the

parameter estimation, reducing the potential for convergence and/or accurate parameter

estimation. Second, if at the final iteration vr�1 is significantly different than 1.0 it may

produce weights that are not proportional to the inverse of the variance of the measurement

error, which is necessary for a valid regression and reflected in the original weighting. In

such a case a final step may be necessary, revaluating the system using the estimated

parameter values and setting vr�1=1.0.
3. Results and discussion

This section focuses on six results of the simulations conducted: (1) selection of

temporal moments instead of individual conservative-transport observations, (2) TSS
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sensitivity, (3) how well the scaled sensitivities reflect observation importance, (4)

considerations for residual weighting, (5) effects of the scaling factor in the parameter-

estimation objective function, and (6) a summary of sensitivity analysis and parameter

estimation results.

3.1. Issues associated with using individual conservative-transport observations

Preliminary sensitivity runs, not presented in this work, revealed errors in css values

calculated for conservative concentrations: css values were not equal, but should have

been, for samplers that were symmetrically positioned about the longitudinal center line of

the system. To demonstrate, consider sampler transect 6 in Fig. 1. Sampler b, above the

longitudinal center line, should have the same calculated css as sampler d, which is an

equal distance below the center line. However, preliminary sensitivity runs produced a

sampler b css 20% larger than the sampler d css. There are two primary reasons for this

inconsistency, both of which suggest problems with using individual concentration

observations.

First, even for the simple conditions evaluated, the flow-field solution error was

sufficient to produce a slightly non-symmetric solute plume. With a head convergence

criterion of 10�5, a 0.41% difference in concentration between samplers b and d was not

unusual. Error in the calculated concentrations, especially lower concentrations which

typically have greater weights when using weights based on simulated concentrations,

produced sensitivities that were asymmetric: a 20% difference in calculated sensitivity

between samplers b and d was not unusual. It was also evident that the two sets of

calculations, (1) transport based on the flow field, and (2) parameter sensitivities based on

transport, tended to increase the significance of the asymmetry by orders of magnitude. A

flow-field solution error of 0.001% resulted in samplers b and d having concentration

differences of about 0.4% and dssK differing by about 10%. As a result, minor flow field

errors caused css values, that should have been identical, to differ by up to 23%.

Decreasing the convergence criteria to 10�13, so that the flow-model error was on the same

order as the precision of the numerical calculations, eliminated this source of error for the

system simulated, but may not be a viable option for more complex systems.

Second, often a single observation, and therefore a single dss, effectively determines the

css for an entire BTC. Focusing on advection dominated systems and using weights to

insure significance over many orders of magnitude produces a combination of rapid

concentration transitions and a large range of weights. Under these circumstances the

accuracy achievable using perturbation-method sensitivity calculations results in the css

being susceptible to situations where a few observations at the base of a sharp-front BTC

rising limb exhibit relatively large changes as parameters are perturbed, and the change is

given considerable weight due to the low initial concentration. For example, in a typical

preliminary sensitivity-analysis evaluation of a conservative transport BTC, 75% of the css

magnitude was from just two of the 70 observations.

Replacing or augmenting individual concentration measurements with m1 eliminates

both of the issues discussed. As a lumped statistic m1 is far less susceptible to numerical

issues that might adversely permit a few observations to dominate the contribution of the

entire BTC. Being a measure of mean arrival time, m1 is not significant over multiple



G. Barth, M.C. Hill / Journal of Contaminant Hydrology 76 (2005) 251–277266
orders of magnitude, reflecting that the low-concentration conservative-transport

observations are not critical for this evaluation and that there is no need to create weights

ranging over multiple orders of magnitude. In addition to the previously discussed benefit

of remaining sensitive even when the predicted conservative-transport BTC does not

overlap the observed BTC, using m1 in place of individual concentration measurements

produced a set of sensitivity results that were symmetric about the longitudinal axis and

provided a set of calculated sensitivities that did not exhibit numerically induced

variability.

It is possible that for different circumstances the choice between BTC temporal

moments and individual concentration observations may not be as straightforward.

Examples include a more dispersive system, heterogeneity that produces multiple-peak

conservative-transport BTCs, or an extremely sparse observation data set. Considering the

benefits of temporal moments, the approach would be worth evaluating for most

situations. Whether to use 1st moments only, combining them with individual

concentration observations, and(or) using 2nd order temporal moments to reflect BTC

spreading (Shapiro and Cvetkovic, 1988; Barth et al., 2003) is problem dependent.

3.2. Transport step-size (TSS) sensitivity

This work demonstrates the sensitivity of transport simulation results to TSS, and that

TSS sensitivity can surpass some of the less sensitive virus-transport parameters. For

example, a 1% perturbation of k1, a parameter that does not affect conservative transport,

may change TSS0, resulting in a nonzero sensitivity of conservative transport observations

to k1. This issue can be addressed by fixing TSS at a sufficiently small value. In this work,

TSS is fixed at TSSf such that TSSf ~(0.8)TSS0, where TSS0 is calculated by MT3DMS,

using initial parameter values in Eqs. (5a)–(5e). Setting TSSf =(0.8)TSS0 is a compromise

to keep execution time as short as possible without having significant mass-balance errors

and avoiding the possibility of simulation-result changes due to changes in TSS. Parameter

value changes that force TSSbTSSf requires repeating the parameter estimation with a

smaller value of TSSf if sensitivity to cssTSS is comparable to css of other parameters.

Fixing the TSSbTSS0 means that the Courant number, Cr, may be different for each

forward run used to calculate the perturbation sensitivities. The potential differences in

simulated transport observations would be largest for advective systems where the

physical dispersion is small. However, for this work a fixed TSS is used because (1) a

primary objective is generating accurate sensitivities, (2) the impact due to Cr differences

is minor, and (3) the resulting variations in Cr are small compared to what can be expected

for a heterogeneous system where Cr will vary throughout the domain since a single value

TSS must be used for the entire model domain. This reasoning also suggests the use of a

fixed TSS for many other systems.

If cssTSS is larger than css of one or more of the other parameters, sensitivity analysis

and estimation of those parameters may be susceptible to variability in TSS. In this work,

for the set of parameters evaluated, cssTSSNcssk1 (Fig. 3) suggesting that changes in TSS

affect simulated results more than changes in the in-solution inactivation parameter, k1.
Different parameter values may produce situations where cssTSSbcssk1 or where cssTSS is

larger than the css of a different parameter. Obtaining cssk1, for the conditions simulated,



Fig. 3. Composite-scaled sensitivities of the seven parameters and TSS. Composite scaled sensitivities indicate the

parameters that are most important for reproducing the observed values. K and h are the most important

parameters, TSS is more important than the rate of inactivation in solution (k1).
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required fixing TSS~0.8TSS0. In general, this precaution is necessary for applications that

include less sensitive parameters: if TSS is not fixed, the amount of information provided

by the parameter cannot be calculated accurately, which will affect parameter estimation

regardless of the parameter estimation method.

3.3. Issues and precautions for calculating sensitivities

The ability of dimensionless and composite scaled sensitivities to reflect the

information contained in observations is influenced by both the calculated unscaled

sensitivity and the scaling used in the weights.

Unscaled sensitivities can vary for reasons such as numerical solution variability in

advection-dominated systems. For example, in transport simulations, a value of PeN2.0

can produce small variations in simulated transport that can have a dramatic impact on

calculated derivatives. Fig. 4 uses examples from a one-dimensional simulation with a

sharp concentration front to illustrate the issue. Composite-scaled sensitivities of hydraulic

conductivity are calculated for each of the eight observation locations using the flow

observation, conservative-transport moments, and virus-transport observations from each

sampling transect. Fig. 4 shows the trend with distance from the source for grid

refinements of 80, 160, 640 and 2560 nodes, corresponding to Pe=16, 8, 2, and 0.5,

respectively. Transport through more dispersive systems will tend to reduce the potential

for a sharp front and associated variability of the numerical solution. However, virus

transport must often be characterized for highly advective systems over distances on the

order of tens of meters where there is limited opportunity for smoothing of a sharp

concentration front. Finally, it is worth considering heterogeneous systems and the effect



Fig. 4. Hydraulic conductivity composite scaled sensitivity, cssK, calculated for observation locations at different

distances from the source for four grid refinements corresponding to grid Peclet numbers ranging from 0.5 to 16,

reflecting grid refinements that range from 2560 to 80 nodes, respectively. The erratic cssK values for grid Peclet

numbersN2 suggest numerical difficulties are corrupting the perturbation sensitivities and that parameter estimates

will probably be affected.
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of the local Pe in heterogeneous systems. These results suggest that, at locations where the

local value of Pe exceeds 2.0, the calculated sensitivity of a spatially varying parameter

may reflect a combination of parameter importance and numerical variability at that

location.

Of special concern in the scaling used is that the weights determined using Eq. (11)

range widely because virus concentrations are significant over eight orders of magnitude.

This can exacerbate any variations in the unscaled sensitivity. Problems occur for both

observed and simulated-value weighting, OVW and SVW, respectively, but differ in their

effect. Benefits and drawbacks of using OVW and SVW for calculating sensitivities were

examined and are summarized in Table 2. SVW has two primary advantages: (1) it

produces scaled sensitivities that better reflect parameter importance for the simulated

transport, especially as simulated values become considerably different from observed,

and (2) it results in unbiased weighted residuals (Anderman and Hill, 1999). OVW can

distort the dss resulting in just a few observations dominating the css of a parameter:

significant unscaled sensitivities in conjunction with large weights based on small

observed values produce a few large dss that predominately determine the updating of the

parameter vector during the regression. Fig. 5 demonstrates this issue using observed and

simulated conservative-transport BTCs, unscaled sensitivities, and OVW- and SVW-

scaled sensitivities. The simulations were performed using an unoptimized set of

parameter values. The unscaled and SVW-scaled sensitivities reflect the shape of the

simulated BTC: the largest sensitivities correspond to the portions of the BTC that change

most for a change in K. In contrast, the values of the OVW-scaled sensitivities are



Table 2

Alternative transport weighting approaches

Weighting

approach

Equivalent formsa Issues

Sensitivity (Fig. 5) Weighted residual

(Figs. 6, 7 and 8)

Parameter

estimates

OVWb
yci � ŷyci

ycI

1

Cvi

��
dss for observations

where ŷi
cNyi

c can be

much larger than all

other dss

Negative transport-observation

weighted residualsc can be

much larger than all others

Biased

SVWd
yci � ŷyci

ŷyci

1

Cvi

��
Positive transport-observation

weighted residualsc can be much

larger than all others

Unbiased

a In the equivalent forms, residuals are normalized with observed or simulated values and the weights are

based on the coefficient of variation.
b OVW: Observed-value weighting: weights in Eq. (11) are calculated using observations.
c Residuals are calculated as observed minus simulated concentrations ( yi

c�ŷi
c).

d SVW: Simulated-value weighting: weights in Eq. (11) are calculated using simulated concentrations.
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dominated by the combination of large weights (due to small observed values) with large

unscaled sensitivities. In Fig. 5, only a few of the observations with large unscaled

sensitivities have significant values of OVW-scaled sensitivities. The SVW-scaled sen-
Fig. 5. Observed and simulated breakthrough curves with hydraulic-conductivity (K) dimensionless-scaled

sensitivities (dssK) using observed- and simulated-value weighting. The dssK produced using observed-value

weighting are extremely large when large unscaled sensitivities coincide with large weights resulting from small

observed values. Simulated-value weighting produces dssK that more realistically reflect the importance of

hydraulic conductivity on the simulation and reduce the potential for unstable parameter-estimation runs.
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sitivities will provide much better insight as to the observations that contain information,

while the OVW-scaled sensitivities can be misleading since only a limited portion of the

observations, associated with small observed values, are the most influential. The limited

number and magnitude of the OVW-scaled sensitivities also result in a set of sensitivities

far more susceptible to small variations in the numerical solution. In contrast, SVW

cannot result in a combination of significant unscaled sensitivities and large weights

associated with small concentrations. The SVW-scaled sensitivities are a better

representation of the impact of changes in K on the simulated concentrations. This

comparison between OVWand SVW scaled sensitivities is not to advocate creating scaled

sensitivities with the exact same emphasis as the unscaled sensitivities, this would defeat

one of the major incentives for scaling. The comparison demonstrates that SVW-scaled

sensitivities more accurately reflect the observation information and that OVW-scaled

sensitivities can be dominated by a few observations that, in general, should not be

emphasized over other observations.

3.4. Residual-weighting issues

As with sensitivity analysis, the combination of typical virus-transport conditions and

the significance of concentration over a wide range can make parameter estimation

susceptible to numerical issues. These issues include (1) residuals in the flow field, (2)

oscillations in the transport solution, and (3) sharp fronts.

The weighted residual on the ith concentration observation (ei
c) is defined as

eci ¼ yci � ŷyci
� �

x1=2
ci

¼ yci � ŷyci
� � 1

Cvi ỹy
c
i

: ð19Þ

For values of normalized concentration ranging from 0 to 1.0, when either the

simulated or observed value is considerably larger than the other, the absolute value of the

residual approaches 1.0 and the absolute value of the weighted residual approaches

		eci 		cx1=2
ci

¼ 1

Cvi ỹy
c
i

: ð20Þ

For concentrations that are significant over eight orders of magnitude, there would

typically be a difference of more than seven orders of magnitude for positive vs. negative

weighted residuals. Fig. 6 demonstrates that, for observations that are significant over so

many orders of magnitude, both OVW weighted residuals (eovw) and SVW weighted

residuals (esvw) have the potential to be very large. The size of these weighted residuals

means that any error in the sensitivity resulting from numerical difficulties has greater

potential to prevent successful convergence. This can be especially problematic when

insensitive parameters are involved or when there are only a limited number of transport

observations.

In contrast to scaled-sensitivity calculations, esvw offer a more subtle advantage that is

best demonstrated using a set of examples. When using OVW, weighted residuals are

largest for negative residuals (simulated values greater than the observed), while SVW

produces weighted residuals that are largest for positive residuals.



Fig. 6. Simulated breakthrough curve trailing but overlapping the observed breakthrough curve, and weighted

residuals using observed- and simulated-value weighting. Observed-value weighted residuals are very large when

large residuals combine with large weights, resulting from small observed values. Analogously simulated

weighted residuals are very large when large residuals coincide with small simulated values. In both cases there is

potential for a few weighted residuals to dominate the objective function, making the system more susceptible to

numerical variability.
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Three scenarios are considered to illustrate similarities and differences in eovw and esvw.

The first, with the simulated BTC trailing and overlapping the observed, is shown in Fig.

6. Second, an extreme case where only either the observed or simulated BTC have

significant values is examined. The third scenario considers a more common situation,

where the simulated BTC trails, but does not overlap the observed BTC.

With the simulated overlapping the observed BTC, eovw and esvw can become very

large. The amount for each approach depends on the amount of overlap, the primary

difference being that esvw increase the objective function when the simulated does not

match large observed concentrations, and eovw increase the objective functions when

simulated values do not match the zero, or threshold concentrations. Next, consider an

observed BTC similar to Fig. 5 and a simulated BTC that, for the time period during which

observations were recorded, consists of a constant value equal to the threshold

concentration, in this case a normalized concentration of 10�8 (Fig. 7). Having an initial

hydraulic conductivity estimate that is incorrect by an order of magnitude produces this

situation for the system simulated in this work. Weighted residuals, using OVW or SVW,

mimic the shape of the observed BTC but eovw are quite small because there are no

negative residuals: the simulated BTC is flat for the time period during which observations

were recorded. If the situation is reversed, where the observed BTC is a constant threshold

value and the simulated BTC resembles the simulated BTC in Fig. 5, the above comments

would apply to esvw. However, it is far less likely that parameter estimation will be

attempted when there are no significant observed concentrations, while the former

situation probably occurs more frequently than most investigators care to recall.



Fig. 7. Observed and simulated breakthrough curves, without any significant simulated values, and weighted

residuals using observed- and simulated-value weighting. Simulated-value weighted residuals overlay the

observed breakthrough curve. Observed-value weighted residuals do a poor job of reflecting the difference

between observed and simulated values. If the situation is reversed, with no significant observed values and a

significant simulated breakthrough curve, simulated-value weighted residuals do a poor job of reflecting the

difference between observed and simulated values.

G. Barth, M.C. Hill / Journal of Contaminant Hydrology 76 (2005) 251–277272
The third scenario, with the simulated BTC trailing but not overlapping the observed

BTC illustrates only a slight advantage to using SVW (Fig. 8). For example, decreasing

the transport rate shifts the simulated BTC curve to the right, further from the observed

BTC, but decreases the eovw contribution to the objective function as the simulated BTC is

shifted beyond the observation period, which for Fig. 8 would mean later than 50 days.

The same decrease in transport rate would have minimal effect on esvw contributions to the

objective function, the majority of which are determined by the mismatch where observed

concentrations are significant.

Individual circumstances may determine which approach is best for weighting

residuals. In general, the arguments for using SVW become more significant when

considering all aspects of sensitivity analysis and parameter estimation, as summarized in

Table 2. Regardless the weighting method the two scenarios presented also tend to reiterate

the benefits of using temporal-moments to supplement or replace individual conservative-

transport observations: the moments provide feedback even when the observed and

simulated BTCs do not overlap.

3.5. Parameter estimation scaling factor

The potential disparity between the net contribution to the objective function of fixed-

weight (Eq. (13)) and variable-weight (Eq. (14)) residuals apparently defeated the purpose



Fig. 8. (a) Simulated breakthrough curves trailing but not overlapping the observed breakthrough curve, and (b)

the resulting weighted residuals using observed- and simulated-value weighting. Observed- and simulated-value

weighting produces similar weighted residuals, however, decreasing the transport rate so that the simulated

breakthrough curve shifts to the right and beyond the period of observations decreases the total observed-value

weighting weighted residuals while having no significant impact on simulated-value weighting weighted

residuals.
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of the parameter-estimation scaling factor. Beginning with the first parameter-estimation

iteration, vr�1 tended to over-compensate, and at each successive iteration under- or over-

scaled the contribution of the fixed- or variable-weight residuals by a similar factor (Fig.

9). The magnitude of vr�1 and the potential for dramatic between-iterations oscillations

overshadowed any benefits from scaling. This illustrates the potential benefits of damping

vr�1. The tendency for vr�1 to over compensate was addressed by using a fixed value of

vr�1=1.0.



Fig. 9. Oscillations of the parameter-estimation scaling factor (vr�1) with successive iterations of the parameter

estimation. The value of vr�1 adjusts the relative emphasis on the fixed- and variable-weight residuals, which in

this work are heads, flows and conservative-transport BTC moments, and the virus transport concentrations,

respectively.
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3.6. Sensitivity analysis and parameter estimation summary

Complete sensitivity-analysis and parameter-estimation results are presented in Barth

and Hill (in review), and are discussed briefly in this section. This discussion is to provide

insight to the potential of the methods described in this paper.

The css for the system evaluated indicate that the observations provide the most

information for estimating hydraulic conductivity, porosity and the sorption rate (Fig. 3).

The observations provide the most information for hydraulic conductivity and porosity

primarily because both the conservative and virus concentrations provide information for

these two parameters, and because the system is advection dominated.

Correlation between pairs of parameters was evaluated prior to any parameter-

estimation attempts and extreme correlation between two pairs was identified: between h
and K, and between b and k1. The high correlation between b and k1 is expected given

their role in Eq. (1a). Considering the coupling between C and C̄ in Eqs. (1a) and (1b), for

some sets of parameters the correlation probably depends on other parameter values, with

Kd being likely. The high correlation between h and K is expected given their role in Eq.

(1c): the non-equilibrium sorption term of Eq. (1a) provides the only opportunity for h and

K to be identified uniquely. The presence of extreme parameter correlation between pairs

of parameters indicates that the system evaluated does not need the full range of each and

every parameter to characterize the full range of response. This notion can be extended

beyond individual pairs of parameters to groups of parameters and associated

dimensionless terms such as the Damkohler number (D), the ratio of characteristic

residence time to characteristic reaction time. For the system analyzed, sorptive–reactive

transport observations resulting from combinations of parameters, including h, K, and b,
that produce the same value of D will not provide any new information. Evaluating
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correlation between multiple parameters in this system demonstrated this: correlation

between K and b was as high as 0.99 when correlation coefficients were calculated for all

parameters simultaneously. The extreme correlation between K and b is not evident with a

pairwise evaluation of parameter correlation since other parameters in D will be fixed

during the calculations. As for any parameter correlation coefficient, model nonlinearity

can make parameter correlation coefficients change significantly for different parameter

values (Poeter and Hill, 1998) and the correlations measured for this parameter set may

change significantly for different parameter values.

Given the less than two orders of magnitude range of css for the parameters (Fig. 3), if

there was not any extreme parameter correlation, it should be possible to estimate all

parameters (Hill, 1998, p. 38). The existing extreme parameter correlation thwarted

attempts to estimate all parameters simultaneously. Successful parameter estimation

required that two parameter values be assigned prior information or be fixed at assigned

values. As suggested by Hill (1998), the two approaches produce virtually the same

parameter values. The parameters k1 and h were fixed: k1 was chosen because it is much

less sensitive and independent determination of k1 from laboratory data is more likely

while h was fixed because in unconsolidated deposits field data commonly constrain its

value within a narrower range than can be achieved for K. Two parameter-estimation runs,

one estimating all parameters, and the other fixing the two parameters, produced the same

small value of the objective function for significantly different final parameter values,

demonstrating the impact of extreme parameter correlation through the existence of

multiple minima when all parameters are estimated. Two final parameter-estimation runs

starting from significantly different initial values, with both k1 and h fixed, produced the

same parameter estimates suggesting that with the two parameter values fixed, a unique

minimum is defined.
4. Conclusions

Adoption of the strategies presented in this work improved the potential for calculating

accurate virus-transport parameter sensitivities and successfully performing parameter

estimation using widely applicable perturbation methods. The results of this work show

that when using perturbation methods to calculate sensitivities on field data sets with sharp

concentration fronts it is possible to improve virus-transport parameter sensitivity analysis

and estimation by (1) using alternative methods of representing observations, (2)

examining the transport simulation model transport-step-size sensitivity as an indication

of the threshold for parameter-sensitivity significance, (3) selecting an appropriate

observation-weighting approach, and (4) determining whether the parameter-estimation

scaling factor improves the regression. Based on the circumstances evaluated, this work

produced the following conclusions: (1) moments of conservative transport observations

provide a robust form of information for sensitivity analysis and parameter estimation, (2)

the importance of the transport-step size sensitivity is comparable to several of the

parameters controlling sorption and inactivation, indicating the potential for numerical

variability to degrade calculated-sensitivity and parameter-estimate accuracy, (3)

simulated-based weighting typically provides an advantage over observed-based weight-
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ing, and (4) oscillations of the parameter-estimation scaling factor precludes its use to

improve convergence.
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