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Abstract

This paper evaluates the importance of seven types of parameters to virus transport: hydraulic

conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing

physical–chemical filtration), and in-solution and adsorbed inactivation (representing virus

inactivation). The first three parameters relate to subsurface transport in general while the last

four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates,

represent the interaction of viruses with the porous medium and their ability to persist. The

importance of four types of observations to estimate the virus-transport parameters are evaluated:

hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus

concentrations. The evaluations are conducted using one- and two-dimensional homogeneous

simulations, designed from published field experiments, and recently developed sensitivity-analysis

methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of

numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption

are most important to virus-transport predictions. Most observation types provide substantial

information about hydraulic conductivity and porosity; only virus-concentration observations

provide information about sorption and inactivation. The observations are not sufficient to estimate

these important parameters uniquely. Even with all observation types, there is extreme parameter

correlation between porosity and hydraulic conductivity and between the sorption rate and in-
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solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-

solution inactivation.

Published by Elsevier B.V.
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1. Introduction

Viral contamination of groundwater can occur in a variety of ways including landfills,

open dumps, broken sewer pipelines, leaking septic tanks, urban runoff, and crop irrigation

with treated sewage effluent (Zelikson, 1994; Yates et al., 1985; Keswick and Gerba,

1980) resulting in serious health problems (Craun, 1992, 1989; Parsonnet et al., 1989;

Weissman et al., 1976). Most urban centers in the United States expend considerable effort

to treat drinking-water supplies for a wide range of pathogenic contaminants, but similar

precautions usually are not taken for many rural drinking-water sources and even some

urban sources that rely on groundwater as their primary source of drinking water (Yates et

al., 1985). The EPA’s proposed Ground Water Rule (Code of Federal Regulations, 40 CFR

141 and 142, 2000) addresses this issue by requiring that the potential for contamination of

groundwater drinking supplies be assessed. The objective is to keep the risk of infection

below one per 10,000 people per year. Maximum allowable concentrations for this level of

risk can be calculated based on drinking water consumption and dose response which, for

viruses, translates to a maximum allowable concentration of 1.8�10�7 plaque-forming

units per liter (pfu L�1) (Regli et al., 1991), or 1.0 pfu per 5.5�106 L. Given that source

concentrations have been reported in the range of 0.02-10 pfu L�1 (Schijven et al., 1999),

with higher values expected for incidental storm-water overflow, concentrations ranging

over eight orders of magnitude should be considered.

Virus transport simulation can serve as an effective tool for evaluating contamination

potential but requires accurate model construction and parameter values. Variability of site

conditions, and the typically short distances over which viruses remain a potential threat to

water quality, suggest that a site-specific assessment of the mechanisms controlling virus

transport is necessary to produce accurate transport predictions (Bales et al., 1997).

Most simulations of virus transport have been one-dimensional (1D), and have

represented 1D laboratory experiments or simple field experiments (e.g., Johnson et al.,

1996; Harvey and Garabedian, 1991; Bales et al., 1997; Schijven et al., 1999). Here we

consider 1D and 2D simulations of a homogeneous system, though, as is shown, the 2D

simulation can be closely approximated by a 1D simulation.

The published virus transport simulations have used a variety of mechanisms,

including advection, dispersion, sorption, reaction, and velocity enhancement (e.g.,

Johnson et al., 1996). Campbell-Rehmann and Welty (1999), among others, also

considered colloid filtration. Velocity enhancement refers to virus transport at rates faster

than the conservative solute. Velocity enhancement has been observed (e.g., Becker et

al., 1999) or predicted (e.g., Campbell-Rehmann and Welty, 1999). However, field and

laboratory investigations by Harvey et al. (1993), Bales et al. (1997), and Schijven et al.

(1999) detected minimal or no velocity enhancement. Here we consider all of the
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mechanisms listed except for velocity enhancement and colloid filtration. This is

reasonable considering the absence of consistent results for velocity enhancement, and

that, due to the small size of viruses, potential for significant colloid filtration and

velocity enhancement would typically be anticipated only in porous media with very

small pore sizes. While additional mechanisms are important at some sites, the

mechanisms considered here are common to nearly all sites and often dominate virus

transport.

An important use of a model is to perform sensitivity analysis to determine the relative

importance of parameters to predictions of interest, and the ability of available

observations to estimate those parameters. Sensitivity analysis can be used to help

identify field efforts most likely to improve the simulation of system dynamics and

predictions of interest, and to justify these efforts to resource managers.

Here we consider the sensitivity-analysis methods of Hill (1998) and Barth and Hill

(2005). These methods are based on sensitivities defined as the derivatives of simulated

values with respect to parameters. The simulated values considered in this work are either

the simulated equivalents to observations or the predictions of interest. Sensitivities can be

calculated using sensitivity-equation, adjoint-state, and perturbation-based methods (e.g.,

Yeh, 1986). Perturbation-based methods are easy to apply to any model and are used in

this work. They are calculated using UCODE (Poeter and Hill, 1998). The sensitivity-

analysis methods use scaled sensitivities and parameter correlation coefficients, and are

very versatile. For example, the same methods have been applied to groundwater flow

problems by Poeter and Hill (1997) and Hill (1998); groundwater transport problems by

Anderman et al. (1996) and Barlebo et al. (1998), and surface-water transport by Scott et

al. (2003).

Sensitivity analysis of virus transport has been addressed in a few publications. Yates

and Jury (1995) used a one-dimensional, analytical, virus-transport model that included

inactivation and equilibrium sorption to evaluate the sensitivity of peak simulated virus

concentrations to system parameters. Stochastic analysis by Campbell-Rehmann and

Welty (1999) examined a wide range of virus-transport mechanisms and demonstrated the

effect of individual parameters on virus-transport breakthrough curves, over distances

large enough for the stochastic interpretation to be valid. Sensitivity analysis of

conservative transport has been more common; for example Knopman and Voss (1987)

and Barlebo et al. (1998).

This work differs from previous investigations in four ways. (1) The sensitivity analysis

methods used are substantially different. (2) This work focuses on travel distances on the

order of tens of meters, which are much shorter than those considered by Campbell-

Rehmann and Welty (1999). This is important because in many field situations viruses

maintain dangerous concentrations only over short travel distances. (3) This work

considers many more types of typically available field observations than have been

considered in previous works, including hydraulic heads, flow, conservative-transport

concentrations, and virus concentrations. (4) This work takes advantage of four methods

identified in Barth and Hill (2005): (a) conservative-transport breakthrough curve

moments are used instead of individual conservative-transport observations, (b) the

sensitivity of the transport step size (TSS) is used to indicate the minimum significant

parameter sensitivity, (c) simulated-value weighting is designed such that virus-transport
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observations and predictions properly account for concentrations that vary over many

orders of magnitude, and (d) precautions are taken to produce accurate calculated virus-

concentration sensitivities despite the very wide range of concentrations that need to be

considered.

This work investigates a homogeneous system for a select range of parameter values,

mimicking conditions from a published field experiment (Schijven et al., 1999). Similar

experiments in a heterogeneous system may produce different spatial trends in parameter

importance, relative parameter importance, parameter correlation and the potential for

parameter estimation. Future work on the scale of interest, on the order of tens of meters,

may address some basic heterogeneous configurations but this investigation’s focus on a

homogeneous system produces results which might otherwise be masked or misinterpreted

by the effects of heterogeneity. The analysis performed in this work is repeated for several

parameter sets reflecting slightly more than the range of conditions in the field experiments

by Schijven et al. (1999). While the range of conditions evaluated does not encompass the

entire range of possible virus transport conditions, it provides insight to some of the

variability that can be expected for different parameter values.

The objectives of this paper are to, (1) determine which parameters are most important

to virus transport, and how that importance changes over time to determine the utility of

early-time virus-transport observations for predicting late-time concentrations, (2) identify

changes in relative parameter importance with distance from the source, (3) investigate the

effects of transport-equation nonlinearity with respect to parameters on evaluations of

parameter importance to simulated virus transport and observation importance to

parameter estimation, and (4) demonstrate the potential for parameter estimation.
2. Methods

This section provides detailed information about (1) the mechanisms used to represent

virus transport, (2) the virus-transport parameter values used in the sensitivity analysis and

parameter estimation, (3) details of the numerical simulations, and (4) sensitivity-analysis

statistics and weighting.

2.1. Virus-transport mechanisms

This work considers advection, dispersion, sorption (to represent physical–chemical

filtration), and reaction mechanisms (to represent virus inactivation) to simulate virus

transport. Each mechanism is discussed briefly in the following paragraphs. While

advection and dispersion are common to virtually all subsurface transport, the combination

of sorption and reaction mechanisms are used in this work to represent the interaction of

viruses with the porous medium and their ability to persist.

Advective transport is calculated using the groundwater flow equation, as would be

typical of a field problem. This differs from many works that estimate advection directly.

In field problems, accurate characterization of groundwater flow is critical for predicting

virus transport in the saturated subsurface because it determines advective transport and is

an integral factor in determining potential for sorption (McCarthy et al., 1996).
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Dispersion can smooth a concentration front and reduce the peak concentration. Even in

the absence of sorption and reaction, dispersion is important to early breakthrough

preceding the advection front and the tendency for a prolonged breakthrough curve (BTC)

tail.

Physical–chemical filtration is represented as sorption. Virus size precludes other

particle filtration mechanisms, such as surface caking, straining or, as previously

mentioned, colloid filtration, from being a significant factor under most conditions.

Sorption of two viruses commonly used in field and laboratory studies, MS2 and PRD1,

has been shown to be reversible and kinetically limited with different attachment and

detachment time scales (Bales et al., 1997; Kinoshita et al., 1993). Two sorption terms are

used in this work, and can be interpreted or rearranged so that they provide a direct

indication of different rates of sorption attachment and detachment.

Blanc and Nasser (1996) observed virus inactivation to be a first-order irreversible

reaction. Schijven et al. (1999) simulated virus inactivation as a first-order irreversible

reaction. In this work virus inactivation is represented as a first-order irreversible reaction.

Using the mechanisms identified above, virus transport can be simulated as a sorptive,

reactive solute using the advective–dispersive equation (e.g., Corapcioglu and Haridas,

1984; Tim and Mostaghimi, 1991; Schijven et al., 1999).

BC

Bt
¼ B

Bxi
Dij

BC

Bxj

� �
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� B
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miCð Þ
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� b
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The following list defines the terms used in Eqs. (1a,b,c,d).
C Concentration in solution [ML�3] C
P

Adsorbed concentration [MM�1]

t Time [T] qb Bulk density [ML�3]

xi Spatial dimension i [L] K Hydraulic conductivity [LT�1]

Dij Dispersion tensor [L2T�1] a l Dispersivity [L]

vi Interstitial velocity [LT�1] h Porosity

b Sorption rate [T�1] Kd Sorption distribution coef. [L3M�1]

k1 In-solution inactivation rate [T�1] k2 Adsorbed inactivation rate [T�1]

h Hydraulic head [L] D* Molecular diffusion [L2T�1]
Conceptually, the relationship between the Dij, a, vi and D*, is most easily summarized

using a curvilinear coordinate system along the direction of a flowline (Freeze and Cherry,

1979):

Dl ¼ alyþ D4 ð1dÞ
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where the subscript l indicates the curvilinear coordinate direction taken along the

flowline. A full expansion of the fourth order dispersion tensor can be found in many

subsurface transport texts (e.g., Zheng and Bennett, 2002). With respect to dispersivity,

this work focuses on longitudinal dispersivity, a, for systems where the primary

longitudinal axis is aligned with the principal direction of flow.

This investigation focuses on the seven parameters (K, h, a,b, Kd, k1, k2). This
approach is useful because in most systems much of the model uncertainty is associated

with uncertainty in these seven parameter values.

2.2. Parameter data sets

The base set of parameter values, boundary conditions and system stresses used in this

work closely approximate conditions from a series of field experiments by Schijven et al.

(1999). Conservative- and virus-transport experiments, with observations collected for 125

days, were performed in a homogeneous water-supply aquifer in Castricum, the

Netherlands. Results and analysis focused on four wells, W1–W4, ranging from 2.4

(W1) to 10 (W4) m down gradient of the source. Schijven et al. (1999) simulated transport

using a one-dimensional form of (1a) and (1b) and estimated all but one parameter for each

well, W1–W4, using a modified version of CXTFIT (Toride et al., 1995). The value of

parameter k1 was determined from laboratory experiments.

In the present work, simulations are conducted using the sets of parameter values

shown in Table 1. Set A is the base set of parameter values and consists of the average

sorption and inactivation parameters estimated by Schijven et al. (1999) for the four

wells. Parameter set B includes the much lower sorption rates estimated using

observations from well W4 (Schijven et al., 1999). In parameter set C, the inactivation

coefficients are increased by one order of magnitude to examine sensitivities under

conditions more hostile to viruses. The other parameter sets, D and E, are used as
Table 1

Sets of parameter values used in the simulations

Parameter Parameter Set

A B C D/D2a Ea

K, hydraulic conductivity (m day�1) 12b 12b 12b 6.0d 6.0d

a, dispersivity, (m) 0.032b 0.032b 0.032b 0.06d 0.06d

h, porosity 0.35b 0.35b 0.35b 0.35b,e 0.35b,e

Kd, sorption distribution coefficient (m3 kg�1) 0.238b 0.040d 0.238b 0.040d 0.040d

b, sorption rate (day�1) 0.747b 0.245d 0.747b 0.245d 0.245d

k1, in-solution inactivation (day�1) 0.075c 0.075c 0.750d 0.075c,e 0.075c,e

k2, adsorbed inactivation (day�1) 0.07b 0.07b 0.70d 0.07b 0.30d

TSS, transport step size (day) 0.01 0.01 0.01 0.01 0.01

a Parameter sets used to start regressions.
b Average of the values estimated for wells W1–W4 by Schijven et al. (1999) using CXTFIT (Toride et al.,

1995).
c Measured in laboratory experiments (Schijven et al., 1999).
d Bold values differ from Set A values.
e Underlined values were fixed to obtain successful regression results.
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starting values for the parameter-estimation runs. Parameter sets D and E combine the

low sorption and high inactivation of B and C, respectively, with incorrect initial values

of K and a.

2.3. Virus-transport simulation

Virus transport is simulated using the groundwater flow model MODFLOW

(McDonald and Harbaugh, 1988) with the transport model MT3DMS (Zheng, 1998).

Double precision versions are used to reduce the effects of round-off error on the

sensitivity-analysis and regression results described by Poeter and Hill (1998) and Hill and

Østerby (2003). The MODFLOW PCG2 solver (Hill, 1990) was used. MT3DMS uses

operator splitting so that the advective term is solved separately from the other terms. The

Total Variation Diminishing (TVD) method was used to solve the advection term, and the

standard explicit method was used to solve the other terms. The implicit method was not

used because most of the simulations included a sharp front, requiring a longer implicit-

method execution time for comparable solution accuracy.

2.3.1. Finite-difference grid and boundary conditions

The two-dimensional grid consists of 40 rows and 160 columns. Each finite-difference

grid cell measures 0.0254 by 0.0635 m, producing a domain just over 1 m tall and 10.16 m

long (Fig. 1). The system is saturated and does not experience any dewatering, so it is

simulated as a confined system. The upstream boundary was represented as a constant

head and the downstream boundary as a general head boundary with a loss of about 0.33

m producing a gradient of about 0.03. The source is centered along the upgradient

boundary, and spans the central 0.254 m. For ease of interpretation, an arbitrary initial

concentration equal to 1.0 was used, which is analogous to performing the analysis on

concentrations normalized to the initial concentration.

2.3.2. Generating head, flow, and conservative-transport concentration observations

The analysis in this work uses only simulated values. Although the system investigated

is based on a real site, the bobservedQ and bsimulatedQ values are both generated by

numerical simulation. As discussed below, the distinction between simulated and observed

is the noise added to the observed values. The added noise therefore represents the entire

uncertainty between simulated and observed in this work. Knowing the uncertainty, the

weights can be assigned correctly allowing the analysis to focus on: relative parameter
Fig. 1. Two-dimensional model domain, source and observation locations. Even-numbered sampler transects

correspond to wells sampled by Schijven et al. (1999) and include the W1–W4 identifiers used in that paper.
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importance, spatial trends in parameter importance, parameter correlation, and the

potential for parameter estimation. Although beyond the scope of this work, future work

could evaluate the impact of decreasing accuracy in the knowledge of the uncertainty by

using several sets of weights, reflecting a range of error in the uncertainty of the observed

values.

Following the methods of Barth and Hill (2005), forward runs using parameter set A

(Table 1) were used to produce heads, flows, and conservative and virus concentrations,

ŷk, where k indicates the observation type: flow k = f, head k=h, or concentration k =c.

Noise was added to these values to create the observations. A brief overview of the

methods associated with generating noise is provided in this work, details of the process

can be found in Barth and Hill (2005). Noise with a standard deviation of about 0.003 m,

intended to represent a typical pressure-transducer resolution, was added to the simulated

heads to create the observations ( yh); noise with a standard deviation that was about 1% of

the flow through the system was added to the flow to create the flow observations ( yf).

Noise that tended to be larger for larger concentrations was added to the forward-run

simulated transport values (ŷc), to create transport observations ( yc). In general, the

coefficient of variation for concentrations was 0.08, but was modified for small

concentrations, as described by Barth and Hill (2005).

Eight observation transects are located downgradient from the source (Fig. 1). Each

transect has five observation locations for head and transport. Each transport observation is

comprised of the flux-averaged concentration from four finite-difference cells, analogous

to sampling from a well screened over a finite interval. In each transect the third

observation is on the longitudinal centerline.

The simulated flow system is steady state, so there is one head observation for each

observation location. Bulk flow through the system is used as the single flow observation.

Concentration observations were defined at half-day intervals for the first 37 days and then

with increasing intervals, as large as 12 days towards the end of the 125-day simulation

period.

2.3.3. Temporal moments of conservative-transport observations

Temporal moments are used in both the sensitivity analysis and parameter estimation as

an alternative to using conservative-transport observations directly. Temporal moments

provide two benefits (Barth and Hill, 2005), (1) sensitivities are less susceptible to minor

asymmetries and variability associated with numerical errors that occur for conservative

transport in highly advective systems, and (2) the BTC moments remain sensitive even

when the predicted conservative-transport BTC does not overlap the observed BTC. In this

paper, the normalized first moment (m1) calculated at each observation location is used. m1

is calculated as

m1 ¼
M1

M0

where Mj ¼
Z l

0

t jy c x; tð Þdt and j ¼ 0; 1 ð2Þ

where t is time and yc(x, t) is concentration as a function of space and time. m1 provides a

lumped indicator of the arrival time of the center of mass. There are 8 temporal moment

observations in the one-dimensional simulations, and 40 in the two-dimensional

simulations.



G.R. Barth, M.C. Hill / Journal of Contaminant Hydrology 80 (2005) 107–129 115
2.3.4. Virus transport as observations or predictions

The purpose of most models of virus transport is to predict virus concentrations for

conditions or times for which observations are not available. The term bpredictionQ, as
used in this work, refers to numerical-simulation estimates. Predictions must be interpreted

with regard for the inherent limitations associated with any numerical representation of a

physical process. These limitations are due to factors including assumptions in the

governing equations, physical-property parameterization, and the numerical solution.

Despite these limitations the predictions provide a significant contribution, and most

importantly provide the opportunity to examine how changes to the system may affect

virus transport. Virus transport observations that exist for other conditions or times can be

used as observations in model development. Thus, simulated virus transport can be used in

two ways—as predictions and as simulated equivalents to observations. In this work,

simulated virus transport is used both ways to investigate two issues: the importance of

model parameters to virus-transport predictions, and the importance of observations to

estimating the parameters. In either case, as previously mentioned, there are always the

inherent uncertainties associated with simulated values.

Virus-transport concentrations are simulated in the same manner and for the same times

as conservative-transport observations. When used as observations, the same method is

used to add noise to the simulated values. Temporal moments are not used for virus

concentrations because of their long BTC tails.

2.3.5. Observation weighting

Weighting is needed to include all types of observations in a single objective function

for parameter estimation, and is used to calculate the statistics used in the sensitivity

analysis. Weighting is determined based on the observation errors, as is consistent with

theoretical considerations (Hill, 1998). In this work, the errors in the observations are

generated, and the weighting equals one divided by the variance of the errors specified

above. For virus-transport concentrations, the standard deviation generally equals the

coefficient of variation times the observed concentration, with an adjustment made for

very small concentration, as described by Barth and Hill (2005). Weights on the moments

of conservative transport observations were set equal to one divided by 10% of the typical

moment value.

2.4. Statistics of the sensitivity analysis

Prior to attempting parameter estimation, sensitivity analysis can be used to, (1) identify

the parameters most important to predictions of interest, (2) identify the information

observations contain for estimating parameters and identify parameters for which so little

information is available that they are unlikely to be estimated by regression, and (3)

identify parameters that are so correlated given the available observations that they cannot

be uniquely estimated. In practice, the results of 1–3 are used to design a model

development strategy that best serves the issues of concern (Hill, 1998).

In this work, observations, yi
k, and parameters, bl, represent a variety of quantities and

predictions, zm, represent virus concentrations that can vary over many orders of

magnitude. Sensitivity analysis is performed using sensitivities defined as the derivatives
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�

i
k /Bbl or Bzm /Bbl. The sensitivities are calculated using a centered finite-difference

approximation by UCODE (Poeter and Hill, 1998). The sensitivities can have very

different units and magnitudes caused by the characteristics of the quantities involved. To

obtain quantities that can be used to compare the importance of different observations to

different parameters or the importance of different parameters to different predictions, the

sensitivities need to be scaled. Here, dimensionless and prediction scaled sensitivities are

used, as defined below. To obtain statistics that summarize the information provided for

each parameter, the scaled sensitivities have to be combined in a meaningful way. Here,

composite scaled sensitivities are used.

The sensitivities of hydraulic heads to the parameters considered in this work are small

because of system boundary conditions, a constant head at the upgradient end and a

general head boundary at the downgradient boundary, and the homogeneous hydraulic

conductivity field. In many circumstances, factors such as heterogeneity will increase the

sensitivity of hydraulic heads. Despite their limited contribution for the conditions

simulated, head observations are included to emphasize the method: incorporating many

observation types, and presenting the approach to the readers.

2.4.1. Dimensionless scaled sensitivities

Sensitivity-analysis statistics used in this work include dimensionless scaled

sensitivities (dss), composite scaled sensitivities (css), prediction scaled sensitivities

(pss), and parameter correlation coefficients (q), as suggested by Hill (1998). The dssij are

used to evaluate the importance of the ith observation in the estimation the jth parameter.

For a diagonal weight matrix (xP), the dimensionless scaled sensitivities for observation yi
and parameter bj are calculated as,

dssij ¼
Byi

Bbj

� �
bjx

1=2
i ð3Þ

where xi
1 / 2 is the square root of the weight of observation yi, and in this work equals one

divided by the standard deviation of the observation error. The scaling provided by bj and

xi
1 / 2 allows the scaled sensitivities to be compared. Each dss indicates the information

available from each observation for estimating each parameter.

2.4.2. Composite scaled sensitivities

Composite scaled sensitivities (css) are calculated for each parameter as,

cssj ¼
XND
i¼1

dssij
� �2

=ND

" #1=2

ð4Þ

where ND is the number of observations and can include all head, flow, conservative-

tracer, and virus transport observations, or a subset that could be based on observation

type, location, and/or timing. cssj can be thought of as the average change in the simulated

value, expressed as a percent of the observation error standard deviation, caused by a 1%

change in the parameter value—it is a measure of the total information provided by the ND
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observations for the estimation of the jth parameter. For this work, css values are

calculated for (1) all types of observations for all times and locations, including virus

transport; (2) all types of observations for all times and locations except for virus transport;

and (3) all head and flow observations, and the conservative- and virus-transport

observations from each observation location for all times. The last option allows

evaluation of a common circumstance, obtaining concentrations from a single site, and

provides insight to changes with distance from the source.

2.4.3. Prediction scaled sensitivities

In this work prediction scaled sensitivities are calculated as

pssij ¼
Bzi

Bbj

� �
bjx

1=2
i ð5Þ

where for consistency the weight is used whether the virus concentration is considered

as an observation or a prediction. From a practical viewpoint, the resulting prediction

scaled sensitivity represents the amount the prediction would change, expressed as a

percent of the accuracy with which the predicted quantity could be measured, given a

1% change in the parameter value. In some results, a summary statistic is produced by

using prediction scaled sensitivities for virus transport for all times and locations in Eq.

(5). The resulting statistics are called a composite of prediction scaled sensitivities (cpss),

and can be used to evaluate the overall importance of each parameter to the simulation of

virus transport.

2.4.4. Parameter correlation coefficients

Parameter correlation coefficients (qij) close to F1.00 indicate that the observations

may not be sufficient to uniquely estimate parameters bi and bj. Parameter correlation

coefficients should not be confused with the spatial correlation of stochastic hydraulic-

conductivity fields. While parameter correlation coefficients only measure the correlation

between parameter pairs, correlation between sets that include more than two parameters is

evident because the parameter correlation coefficients between all possible pairs will be

close to F1.00. Extreme parameter correlation easily confounds parameter-estimation

attempts in both simple and complex systems (e.g., Carrera and Neuman, 1986; Poeter and

Hill, 1997; Hill and Østerby, 2003).

2.5. Parameter estimation

To estimate parameters, the fit between observed and simulated values was quantified

using a weighted least-squares objective function, S(b
P
), to measure the fit between

simulated values
P
ŷ(bP) and y

P
observations.

S b
P

� �
¼

	
y
P
� ŷ
P
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P
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P
� ŷ
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P

� �

ð6Þ

The weight matrix, xP, accounts for the different units and accuracy of the

observations. The objective function is minimized using a modified Gauss–Newton

method (e.g., Sun, 1994) as described in Hill (1998)) and implemented in UCODE.
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3. Results and discussion

Results are presented in three sections: (1) comparison of simulated conservative- and

virus-transport concentrations, (2) relative observation and parameter importance as

determined by sensitivity analysis, and (3) parameter-estimation results. It is important to

consider that the results discussed in each section reflect the homogeneous system

evaluated at the parameter values listed in Table 1. Different parameter values, of for that

matter heterogeneity, will obviously produce different results. For all circumstances

considered in this work, similar results were obtained using either the one- or two-

dimensional models, so the results from the one- and two-dimensional models are used

interchangeably.

3.1. Comparison of simulated conservative and virus transport concentrations

Except for the long trailing concentrations, simulated virus-transport BTCs, such as

those shown in Fig. 2, are similar in shape to conservative-transport BTCs. This is

advantageous because it suggests that the time of maximum virus-transport concentrations

at any location can be determined based on conservative-transport tracer tests.

Unfortunately, the enduring health risk of low concentrations of viruses means that in

most circumstances additional information about the virus transport is required.

3.2. Sensitivity analysis

Fig. 3 shows composite scaled sensitivities for the system. If virus concentrations are

used as observations, Fig. 3i shows that the virus concentrations would provide the most

information toward estimating hydraulic conductivity, porosity, and the sorption parameter

that represents physical–chemical filtration. If the virus concentrations are predicted, the

composite scaled sensitivities of Fig. 3i can be thought of as composites of prediction

scaled sensitivities (cpss).

Fig. 3ii shows how much information is available for estimating the parameters if all

types of observations, including virus-transport observations, are available for model

development. Based on these css values, more information is provided for K and h than

any of the sorption or inactivation parameters. The two primary reasons are (1) both

conservative and virus concentrations provide information for K and h, and (2) the

simulated system is advection dominated, the Peclet number is equal to 2. Substantial

information also is available to estimate sorption (b) and dispersivity (a). The importance

of a suggests that even though there is little dispersion in this advection-dominated

system, even a small increase in dispersion would be important. Progressively less

information is available for estimation of the absorbed inactivation rate (k2), distribution
coefficient (Kd), and in-solution inactivation rate (k1).

Fig. 3iii shows that without the rarely available virus-transport observations, there is, of

course, no information available from the observations on any of the reactive-transport

parameters, including sorption (b), the distribution coefficient (Kd), and the two

inactivation rates (k1, k2). When efforts are taken to reproduce in situ solutions,

laboratory-based evaluations can provide reasonable estimates of k1. However, the other



Fig. 2. The absolute value of dimensionless scaled sensitivities (|dss|) or prediction scaled sensitivities (pss)

calculated for virus transport using parameter set A (Table 1) at transect six of a one-dimensional model for

parameters representing (i) dispersivity (a) and hydraulic conductivity (K), (ii) transport step size (TSS) and

porosity (h), (iii) sorption rate coefficient (b) and in-solution inactivation (k1), and (iv) sorption distribution

coefficient (Kd) and sorbed inactivation (k2). If the simulated values are associated with observations, the

resulting dss values indicate the information provided by the virus-transport observations for estimating the

parameters. If the simulated values are predictions, the resulting pss values indicate how important the parameter

is to the predicted value.
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parameter values (b,Kd, k2) are dependent on various porous media characteristics, so that

laboratory-based estimates of these parameters have considerably more uncertainty.

Including TSS in Fig. 3 allows evaluation of whether the information provided by the

observations is sufficient to overcome typical numerical inaccuracies (Barth and Hill,

2005). In Fig. 3ii, cssk1bcssTSS, indicating that for the observations considered in this

graph, the system simulated, and the numerical methods used, estimates of in-solution

inactivation, k1, need to be regarded with some suspicion. Thus, even when virus

concentrations are available it can be difficult to obtain reliable estimates of k1 through

model calibration.

BTCs and dimensionless scaled sensitivities (dss) for virus transport observations over

time at a single sampling location in the one-dimensional model are shown in Fig. 2. At

later times, in the long tail of the virus-concentration distribution, the values of dss are

small for some parameters, and large for others. Without weighting that reflects the



Fig. 3. Composite-scaled sensitivities (css) of the seven system parameters and the simulation transport step size,

TSS, evaluated using parameter set A. Results are shown for (i) composited prediction scaled sensitivities (cpss)

which are based only on simulated virus transport, (ii) css using all observations, and (iii) css without virus-

transport observations. cpss evaluate the overall importance of each parameter to the simulation of virus transport.

css indicate the amount of information that the observations provide. Hydraulic conductivity (K) and porosity (h)
are the most important parameters, TSS is more important than the rate of inactivation in solution (k1).
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concentrations involved, the sensitivity analysis and regression would virtually ignore the

low-concentration observations.

The graphs in Fig. 2 show the following for each of the defined parameters. For K,

observations from the entire BTC provide significant information (Fig. 2i). For h, most of

the information is provided by virus-transport observations at the peak of the BTC (Fig.

2ii). To understand why the long tail provides so little information, consider Eqs. (1a,c)

and processes in the tail. Eq. (1c) indicates that if h increases, the fluid velocity slows. Eq.

(1a) indicates that slower fluid velocities result in slower decreases in concentration over

time caused by advective processes: virus concentrations do not drop off as rapidly. At the

same time, the larger value of h results in a smaller non-equilibrium sorption term. For the

tail portion of a BTC, when the adsorbed concentrations may be higher than those in

solution, the non-equilibrium sorption term will be negative. Under these conditions the

impact of porosity changes to the non-equilibrium sorption term can potentially offset

changes to the advection term. This is apparently the case for the results presented in Fig. 2

because the dss values for h in the tail of the BTC are small.

For b and k1, both the BTC peak and tail provide significant information (Fig. 2iii). For

Kd and k2, most of the information comes from the tail (Fig. 2iv).

In typical field-site investigations, virus concentrations included as observations are

obtained at early times and short distances from the source to predict transport at greater

time and distances. The shapes of the dss curves in Fig. 2 (with results at transect 6 using

parameter set A) indicate that early-time observations of virus-transport at this location

provide information on most parameters. However, early observations at this location

provide minimal information for Kd and k2.
If virus concentrations are the predictions of interest instead of observations, the

dimensionless scaled sensitivities of Fig. 2 can be thought of as prediction scaled

sensitivities and Fig. 2 would show which parameters are important to predicting

different parts of the BTCs. From the viewpoint of predicted virus transport, the results

are most discouraging for Kd and k2, in that they are important only to the

concentrations in the tail. This makes their accurate estimation problematic in most

practical situations in which, at best, there might be virus concentrations at early times at

this location. The possibility of virus-transport observations being available closer to the

source is investigated using Fig. 4.

Fig. 4 shows css values from two-dimensional simulations using parameter sets A, B,

and C. The css values are produced using Eq. (4) and include dss values for all

observation types except flow for all times and for all five samplers in each transect. The

css values for K, a, h, and TSS are identical or similar for all three parameter sets; only

results from set A are shown. The css for b, Kd, k1, and k2, differ between parameter sets

A, B, and C, and results for all three are shown. The differences are mostly the result of

model nonlinearity. Although the patterns shift substantially, the relative css values are

remarkably stable. As will be shown, most of the conclusions drawn from the sensitivity

analysis methods used in this work are robust in the presence of the nonlinearities present

in this problem.

The differences in results for parameter sets A, B, and C for the reactive-transport

parameters are easily understood. With less sorption (set B), viruses are transported to

greater distances in larger numbers and the sorption and inactivation terms remain



Fig. 4. The importance of observation location, as measured by composite-scaled sensitivities calculated for all

observations over time at each distance from the source using parameter sets A, B, and C (Table 1) for (i)

hydraulic conductivity (K) and dispersivity (a), (ii) porosity (h) and transport step size (TSS), (iii, v, and vii)

sorption rate (b) and in-solution inactivation (k1), and (iv, vi, and viii) sorption distribution coefficient (Kd) and

adsorbed inactivation rate (k2). Transport-equation nonlinearity with respect to the parameters and scaling using

the parameter value result in the parameter sets producing significantly different css values for the sorption/

inactivation parameters.
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important to greater distances. Higher inactivation (set C) decreases the numbers of viruses

at larger distances, leading to a decline in sorption and inactivation sensitivity further from

the source.

The observations provide the most information for parameters K and h at all distances.

Nearly as much information is provided for parameters a and b. The information provided

for Kd and k2 is greatest for observations near the source. cssTSS is larger than cssk1 at

many distances for parameter set A. cssTSS is larger than cssKd
and cssk2 at many distances

for parameter set C.

The css in Fig. 4 indicate that as long as subsurface conditions are spatially consistent,

observations near the source provide substantial information on parameters important to

more distant transport. For data set A, the reactive parameters become less important at
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distance because the viruses do not survive very long. For set B, decreasing Kd from 0.238

to 0.040 (an 83% reduction) and decreasing b from 0.747 to 0.245 (a 67% reduction),

results in maintained virus concentrations and reactive-transport parameter importance.

For set C, increasing k1 and k2 by an order of magnitude results in a more hostile

environment for the viruses. Under these conditions parameter k1 has a larger css value

than Kd and k2 for virtually all distances, indicating that the in-solution inactivation is the

more important process.

The value of cssTSS varies with distance and has a maximum about 3 m from the

source (Fig. 4ii). The cause is not clear, but may be related to grid size and simulated

concentration gradients. While the graphs in Fig. 2 indicate that dssk1NdssTSS, Fig. 4ii

demonstrates that this does not occur consistently and that when using simulated results

from all of the transects, which is the case for Fig. 3, cssk1bcssTSS. In Fig. 4, the css

results based on data from transect 6 indicate that at that distance from the source

cssk1NcssTSS. However, at most distances, cssk1bcssTSS, which explains the results of

Fig. 3ii. For the system simulated, the numerical inaccuracies indicated by the magnitude

of cssTSS (Barth and Hill, 2005) in Fig. 4 suggest that the contribution of k1 to improving

simulation results is quite limited at distances where, (1) conservative solute concentra-

tions are significant, or more obviously, (2), where the virus concentrations become

insignificant.

For parameters b, Kd, k1, and k2, sensitivities are non-zero for only virus-transport

observations, so Fig. 4iii to viii can be interpreted as composited prediction scaled

sensitivities if virus transport is considered to be a prediction.

For the homogeneous two-dimensional system with the source configuration

considered, vertical-transverse observation-importance variability is small compared to

longitudinal variability so that the transversely averaged values shown in Fig. 4 capture

most significant trends and a full two-dimensional assessment is not necessary for these

simple conditions. For example, Fig. 5 shows the longitudinal and transverse variations in

cssb. The longitudinal trends are the same as seen in Fig. 4iii and v. Transverse variability

is limited. The magnitude of transverse variability of other parameters was similar. For b
and all other parameters, except dispersivity, sensitivity decreases with transverse distance

from the domain centerline. For dispersivity, which can be a critical factor in determining

plume spreading, the observations at the edge of the plume are very important. For all

other parameters the observations along the plume centerline provide the most information

for parameter estimation.

The extreme parameter correlation coefficients shown in Table 2 result when using

observations of head, flow, moments of conservative transport, and virus transport, and

parameter set A of Table 1. The high correlation between b and k1 is expected given their

role in Eq. (1a). The high correlation is also evident in Figs. 2iii and 4iii, v, and vii, in

which the patterns for b and k1 are translated but otherwise nearly identical. Considering

the coupling between C and C
P

in Eqs. (1a) and (1b), for some sets of parameters the

correlation probably depends on other parameter values, with Kd being likely.

The high correlation between h and K is expected given their role in (1c): the non-

equilibrium sorption term of (1a) provides the only opportunity for h and K to be

identified uniquely. Again, the high correlation is evident in Figs. 2i,ii and 4i and ii; after

the peak has passed the dss for h resumes at much lower values, and this explains why the



Fig. 5. Contours of composite scaled sensitivities evaluated for all observations at each of the 40 sampler

locations for the sorption rate (b) for the two-dimensional system using parameter sets A and B. The flow

observation is not included in the calculation. As with all other parameters, for b parameter-importance varies

most in the direction of flow, demonstrating that for this problem the transversely averaged values shown in Fig. 4

capture the most significant trends.

G.R. Barth, M.C. Hill / Journal of Contaminant Hydrology 80 (2005) 107–129124
correlation coefficient is not closer to 1.00. Eqs. (1a,b) suggest that the strength of the

correlation between h and K depends on the importance of the non-equilibrium sorption

process and, therefore, on the value of b /h. If b is small, the correlation between K and h
is expected to be larger. Eq. (1a) and the correlation between b and k1 also suggest that

when k1 is large, inactivation dominates sorption and the correlation between K and h is

expected to be large. These results affect parameter estimation, as discussed below.

3.3. Estimating parameters

Fig. 3ii shows that the range in css across all the parameters is less than two orders of

magnitude and the values are all greater than one, so that, in the absence of extreme

correlation between any parameters, it should be possible to estimate all parameters

(Hill, 1998, p. 38). However, Table 2 shows that parameter correlations are large enough

to be potentially problematic. Indeed, preliminary attempts to estimate all parameters

simultaneously from parameter set D in Table 1, and other sets not listed in this work,
Table 2

Parameter correlation coefficients calculated for parameter set A

Parameter 1 Parameter 2 Correlation coefficienta (q)

Porosity (h) Hydraulic conductivity (K) 0.91

Sorption rate (b) Inactivation in solution (k1) �0.97

a Only parameter correlations N0.8 are reported. Typically, only parameter correlation coefficients of 0.95 or

larger cause problems with regression.



Table 3

Percent error in estimated parameter values

Percent error in parameter valueaRegression run

K α θ Kd λ1 λ2

S(b)

Initial –50.0 89.0 0.0 83.2 67.2 0.0 0.0 5.2Χ109D
Finalb 0.2 0.2 0.0 68.5 43.74 1260 2.6 3.56Χ103

Initial –50.0 89.0 0.0 83.2 67.2 0.0 0.0 5.2Χ109D2c

Final 0.2 0.2 0.0 0.8 0.1 0.0 0.4 3.56Χ103

Initial –50.0 89.0 0.0 83.2 67.2 0.0 900 5.9Χ109E
Final 0.2 0.2 0.0 0.8 0.1 0.0 0.4 3.56Χ103–

–

–
–

–
–

–
–
–

–

–
–

–
–
–

–
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–

β

Shaded cells indicate parameter values that were fixed.
aCalculated as

ðb̂b i�biÞ
bi

100;where b̂i and bi are the estimated and true parameter values; respectively:
bAt these parameter values the parameter correlation coefficient between h and K equals 1.00.
cSame as D except that h and k1 are fixed.
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were unsuccessful in that the estimated value of in-solution inactivation was

unrealistically large and the other parameter estimates, although improved, were still

not correct (Table 3). Successful parameter estimation required that two parameter values

be assigned prior information or be fixed at assigned values. As suggested by Hill

(1998), the two approaches produce virtually the same parameter values. Fixing the

values resulted in shorter execution times and that approach is used in this work. First,

one of the highly correlated parameters b or k1, was fixed. k1 was chosen because it is

much less sensitive and independent determination of k1 from laboratory data is more

likely. A second parameter needed to be set because if h and K and either b or k1 are

estimated, b increased and the correlation between h and K approached 1.00 as the

regression proceeded. Here we set h because in unconsolidated deposits field data

commonly constrain its value within a narrower range than can be achieved for K. This

is consistent with Gelhar (1993), who noted that the field variability of h in

unconsolidated deposits is quite small so that typical variations in h have a relatively

minor impact on advective transport.

Table 3 shows that the same small value of the objective function, S(b̄), is obtained in

regression runs D, and D2 and E for a different set of parameter values. This demonstrates

the existence of more than one minimum when all parameters are estimated. This is

consistent with the parameter correlation coefficients of Table 2. The same parameters

values are estimated for D2 and E, and this situation provides some indication that with the

two parameter values fixed a unique minimum is defined. It is interesting, and not

coincidental, that in run D the ratio of the percent errors in b and k1 is about 30, and that

in Fig. 3ii the ratio of composite scaled sensitivities of 46 for these two parameters is of

similar magnitude. Basically, the composite scaled sensitivities indicate that for an equal

effect k1 needs to change much more than b, and the negative correlation coefficient

indicates that an increase in one can offset a decrease in the other. The values of 30 and 46

probably differ for two reasons. First, model nonlinearity can make the composite scaled

sensitivity change somewhat. Second, as demonstrated by Poeter and Hill (1998), model

nonlinearity can make parameter correlation coefficients change significantly for different

parameter values. In run D the final parameter values suggest that Kd is also involved in

the correlation.

If the assigned values of h and k1 had been in error in either of these runs, the estimated

values of the associated correlated parameters would also be in error. This is most

problematic when predictions of interests are sensitive to the individual fixed parameters,

because smaller percent errors in the fixed parameter values can have a larger affect on

estimated parameter values and, thereby, the simulated results.
4. Conclusions

Sensitivity-analysis and parameter-estimation results from the simulated system lead to

the following set of conclusions.

1. As would be expected for the highly advective system simulated and the observations

used, the observations provided the most information to hydraulic conductivity (K) and
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porosity (h) parameters. These were followed by, in order of decreasing relative

importance, virus sorption-rate (b), dispersivity (a), the absorbed inactivation rate (k2),
the distribution coefficient (Kd), and the in-solution inactivation rate (k1).

2. Even for the advective system examined, information in the tail is important to

determining how long viruses remain a potential health threat.

3. The time and location at which observations are important depends on the plume

characteristics and therefore the values of the parameters, but most of the conclusions

drawn from the sensitivity analysis were robust.

4. For circumstances when virus-transport observations are available, the simulations

performed indicate that virus-transport parameters b, Kd, and k2 can be estimated from

site data.

5. Near-source concentrations that include observations of the BTC tail can be adequate,

while early-time observations at locations further from the source may not provide

sufficient information to estimate Kd and k2.
6. As demonstrated using sensitivities to the transport time-step size (TSS), it is unlikely

that the inactivation in solution (k1) can be characterized even with virus-transport

observations because of numerical inaccuracies involved with solving the equations for

highly advective systems.

Parameter estimation results demonstrated the effects of extreme parameter

correlation and its resolution using fixed parameters. Parameter insensitivity and

extreme parameter correlation did not allow the simultaneous estimation of all seven

parameters investigated. Values of h and k1 were fixed. They were chosen because it

is expected that values for these parameters can be obtained from independent

information, and they were the least sensitive of each of the extremely correlated

parameter pairs. For any pair of extremely correlated parameters, error in the fixed-

parameter value will affect the estimation of the other parameter. Since k1 is

insensitive, the affect of any error will be small. Error in h would affect K, but the

likely percent error in h, and therefore K, is expected to be small. Methods for

quantifying the impact of prior information (e.g., Weiss and Smith, 1997) can be

helpful in selecting parameters to fix. However, the circumstances investigated in this

work clearly demonstrate the need to fix at least two parameters, and that, even

without quantifying parameter-fixing impacts, the choice of parameters is well defined

by at least two of the following three factors, (1) parameter insensitivity, (2) the

potential for independent parameter-value assessment, and (3) typical uncertainty of the

parameter.
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