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ABSTRACT 
 
Estimation of flow or transport parameters often involves observations such as flow or concentrations that 
may be significant over multiple orders of magnitude, typically dictating the use of weights inversely 
proportional to the product of a coefficient of variation multiplied by the observation. This allows 
observations of considerably different magnitude to have similar importance in terms of guiding the 
parameter-estimation process. However, if a simulated value is of smaller absolute magnitude than the 
observed, the weighted residual will be limited to the inverse of the coefficient of variation, while weighted 
residuals of simulated values greater than the observed are unbounded. This produces asymmetry in the 
potential contribution to the objective function from simulated values whose magnitudes are less-than and 
greater-than the observed. This work uses a simple transformation to create a supplemental observation 
set. The combined observation set is used to demonstrate an objective function with improved 
characteristics: including the transformed observations results in a balanced set of objective-function 
contributions from simulated values smaller-than and greater-than the observation magnitude. The 
potential for improving the process of parameter estimation, generating sensitivities, as well as 
precautions for interpreting final statistics, are considered.  
 

INTRODUCTION 
 
Successful parameter estimation relies on many factors including a set of observations that provide 
information sufficient to determine appropriate parameter-value adjustments that improve the fit between 
simulated and observed values. For a valid regression, weights need to be proportional to one divided by 
the variance of the observation error, σi

2, [Draper and Smith, 1998, p. 222] in order to reflect the 
uncertainty of the measurement. Proper weighting allows observations of different units, phenomena, and 
a wide range of magnitude to be combined, providing simultaneous feedback from the entire set of 
observations on changes in the fit between simulated and observed values. 
 
Weights can typically be lumped into one of two categories: fixed-value or variable-value weights, FVW 
and VVW, respectively. These terms reflect the absolute and relative nature of the weights. FVWs 
typically reflect the uncertainty of a measurement device and are not considered in this work. VVWs are 
relative to the observation: they are proportional to a value, typically the observed value. Observed values 
significant over a limited range, such as groundwater heads, typically use FVW. Observations requiring 
VVW include concentrations and flows, when they are significant over multiple orders of magnitude. 
 
This work provides an approach for addressing one of the issues commonly associated with VVW applied 
to observations significant over multiple orders of magnitude: the weights result in a limited magnitude of 
weighted residual for positive residuals (observed - simulated > 0). As a result, an automated parameter 
estimation routine will tend to adjust parameters to improve for any negative residuals with little, if any 
regard, for the positive residuals. Examined individually, residuals from any observation would provide an 
indication of the proper parameter adjustment to improve the fit between the simulated and observed 
values. However, it is quite possible for a few large weighted residuals, from negative residuals, to 
dominate the objective function so that the parameter estimation algorithm accepts the limited penalty 
associated with many positive residuals that produce a relatively minor contribution to the objective 
function. Previous work [Barth and Hill, 2005a and b] explored this and other issues associated with VVW 
and demonstrated precautions to improve potential for successful parameter estimation and sensitivity 
analysis when observations are significant over multiple orders of magnitude. 
 
This work goes beyond previous efforts by proposing the use of a simple transformation to create 
additional observations for supplementing the original observation set. Using a simple one-observation 
example this work demonstrates the potential benefits of the supplemented observation set: the 
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supplemented observation set results in a more balanced set of weighted residuals with respect to 
positive versus negative residuals, can be used to provide a more appropriate set of sensitivities, and 
eliminates one source of parameter-estimate bias. A small hypothetical set of observed and simulated 
values are also used to examine the benefits of supplementing the observation set. Finally, some 
considerations regarding observation redundancy are discussed. 
 

METHODS 
 
Parameter Estimation and Weighting 
 
For this work it is assumed that parameters are estimated by quantifying the fit between observed and 
simulated values, minimizing with respect to the parameter values using a weighted least-squares 
objective function, S(br), Equation (1). The weight 
matrix, ω, and observed- and simulated-value vectors, 
y and y*(br), respectively, include terms for all the 
observations, b is the parameter vector, and the subscript r indicates the parameter estimation iteration 
number. This work assumes that the objective function is minimized using a modified Gauss-Newton 
method [e.g., Seber and Wild, 1989; Sun, 1994] as described in Hill [1998], however the approach of 
supplementing observations should benefit a wide range of objective-function-minimization approaches. 
 
When using VVWs a common approach is to make the 
weight inversely proportional to the observation 
multiplied by a coefficient of variation (Eqn. 2). In (2) 
ND is the number of observations with weights proportional to their value, Cvi is the coefficient of 
variation, and yi should be the true value of the observation. Several issues must be considered when 
applying this approach, including incorporation of detection limits to avoid very small observations, and 
that yi is typically unknown and approximated using observed [e.g., Keider and Rosbjerg, 1991] or 
simulated values [e.g., Wagner and Gorelick, 1986]. The simple, one-observation example does not 
require a detection limit, but a detection limit was used in the example dataset examined in this work. This 
work uses observed values for yi in (2). 
 
In this work the residual is defined as the observed minus the simulated value. The weighted residual on 
the ith observation (WRyi) is defined in (3). Assuming 
normalized values ranging from 0 to 1.0, when either 
the simulated or observed value is considerably larger 
than the other, the absolute value of the residual 
approaches 1.0 and the weighted residual approaches 
the square root of the weight (4). As a result, for 
observations significant over N orders of magnitude, there would typically be a difference of about N 
orders of magnitude for positive versus negative weighted residuals [Barth and Hill, 2005a]. 
 
For this work the hypothetical examples include flows and concentrations ranging over multiple orders of 
magnitude. For example, flow observation would be the total volume that flowed in a stream over the 
irrigation stress period, e.g., 109 ft3. Values could cover a wide range depending on the type, units, and 
other factors. For simplicity the first example, a single-observation example, considers the situation where 
the observed value has been normalized so that it equals 1.0. Using (2) and Cv = 0.1, Figure 1 shows 
that the magnitude of WRy* ranges from about 10, for positive weighted residuals where y* is less than 
about 0.1, to an unbounded amount for negative weighted residuals, as y* grows larger than 10.  
 
The use of a log scale is important to the interpretation of the results depicted in Figure 1. A linear scale 
would simply show an identical slope for both the negative and positive weighted residuals. However, the 
observation is significant over multiple orders of magnitude and as a result, the linear scale will tend to 
mask the fact that positive weighted residuals do not produce similar increases in weighted-residual 
magnitude for each additional order of magnitude deviation from the observed value. The log scale, 
having order of magnitude increments, has the capacity to correctly display and convey this issue. 
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Figure 1. Weighted residual magnitudes using 
simulated, |WRy*|, and inverse simulated 
|WRz*| values, where y = 1, Cv = 0.1 
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Supplemental Observations 
 
To eliminate the asymmetry depicted in Figure 1 
this work proposes a simple transformation of the 
original observations, and appending the 
transformed values to the original observation set. 
The transformation is simply taking the 
multiplicative inverse of each observation, yi, to 
create additional observations, zi: zi = 1/(yi). 
These new observations, referred to as inverse 
observations, are appended to the existing set, 
resulting in a set of 2*ND observations. The 
implications of using observations twice are 
discussed below. 
 
Weights on zi are simply calculated in the same 
manner as yi. The weighted residuals, WRzi in 
Equation (5), are quite similar to WRyi. Comparison 
of (3) and (5) reveals that the net result of adding 
inverse observations is to produce additional weighted 
residuals that are opposite in sign, and are inversely 
proportional to the simulated value, as opposed to the 
observed value. As discussed below, being inversely 
proportional to the simulated value is one of the 
fundamental benefits of using the inverse observations. 
 

RESULTS AND DISCUSSION 
 
Figure 1 also shows the weighted residual from the inverse observations (WRz*), as a function of 
simulated value. For inverse observations and Cv = 0.1, negative weighted residuals have a maximum 
value of 10, while positive weighted residuals increase without bound. The original and inverse 
observation sets complement each other: the original observations produce significant weighted residuals 
for negative residuals, while the inverse-observation weighted residuals are significant for positive 
residuals. While this does not eliminate the issue of redundant use of observations, it at least suggests 
that the contribution of the original and inverse observations have only minor overlap for any given 
simulated value. 
 
Figure 2 provides an example from a hypothetical-scenario dataset that includes flows and 
concentrations. Figure 2a shows the simulated, observed, and weights for the original set and the inverse 
set. Observations 1 – 5 are flow in a drain over the course of 5 stress periods with values varying 
between values of ~103 to 1012, representing flow from the drain during the successive non-irrigation and 
irrigation seasons. The simulated values fluctuate between 107, and 109, attempting to represent low 
flows in the non-irrigation season, and high flows during the irrigation season. Observations 6 – 10 
represent concentrations, in the range from 10-5 to 10-10. The simulated equivalents are relatively 
consistent around 10-7 or 10-8. Note that, since weights are inversely proportional to the values, the 
weights for the original observations are adjacent to the inverse observations and the weights for the 
inverse observations are adjacent to the observations. 
 
Figure 2b shows the residual magnitudes from the original and inverse observations, and how they 
roughly track each other.  
 
The weighted residuals in Figure 2c provide a good example of the combined potential of the original and 
inverse observations. Whenever WRy is small due to positive weighted residual, WRz becomes large, 
and vice versa. When both WRy and WRz are small then the simulated value really is getting close to the 
observed value. In this way, y and z complement each other, providing more balanced feedback through 
the objective function regardless of whether y* and z* are too large or too small. 
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Figure 2. (a) Simulated (y* and z*), observed (y 
and z), and weights (Wy and Wz), (b) residuals, (c) 
weighted residuals. 

 
Generating Dimensionless Scaled 
Sensitivities 
 
While the combination of original and 
inverse observations provides improved 
potential for parameter estimation, this work 
advocates generating dimensionless scaled 
sensitivities (dss) [Hill, 1998] from the 
inverse observations alone. Equation (5) 
demonstrates that inverse observations 
have weight residuals inversely proportional 
to the simulated value so that dss of the 
inverse observations have the same 
benefits as simulated value weights (SVW) 
[Barth and Hill, 2005a]. The dssSVW provide 
a better representation of the impact of 
changes in the parameter on the simulated 
values [Barth and Hill, 2005a]. Using only 
the inverse observations to generate 
sensitivities also eliminates any potential 
issues of data redundancy for the 
sensitivities. 
 
An Approach for Using the Inverse 
Observations 
 
Previous work [Anderman and Hill, 1999] 
has demonstrated that weights based on 
observations may produce a biased set of 
parameter estimates while weights based 
on the simulated values produce unbiased 
parameter estimates. Anderman and Hill 
[1999] point out that using simulated values 
from the start of a parameter estimation run 
could be problematic, and adopted an 
approach that started with observed-value 
weighting, and switched to simulated-value 
weighting as parameter estimate changes 
decreased. This approach is documented 
in the UCODE manual [Poeter and Hill, 
1998]. Switching allows the parameter 
estimation to initially work with a consistent 
set of values and weights when parameters are likely to change significantly. As the per-iteration 
parameter-value changes decrease, SVWs are used to eliminate the potential source of bias. 
 
Together, the asymmetry of weighted residuals demonstrated in this work and bias potential identified by 
Anderman and Hill [1999] suggest the need for modifying the approach to observations and weighting. 
The proposed approach is as follows 
o Start with the supplemented observation set, which produces symmetric weighted residuals about the 

observed values. 
o Drop the original observations, leaving only the inverse observations which do not have the potential 

for a weighting-induced bias of the parameter estimates, based on one of the following decision 
mechanisms: 

o the per-iteration changes in parameter values have become small, or 
o the residual magnitudes have become small. 
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This approach incorporates the balanced weighted-residual feedback of the supplemented observation 
set during initial iterations and then eliminates the potential parameter-estimate bias by using only the 
inverse observations for the final iterations. In addition, switching to inverse observations, as opposed to 
simulated values, for the final iterations avoids the need to generate new weights at each parameter-
estimation iteration. 
 
Ongoing research focuses on developing intuitive test cases for demonstrating inverse-observation 
impact and testing the two decision mechanisms: per-iteration parameter-estimate changes or residual 
magnitudes. Additional work includes refinement of the residual-magnitude decision mechanism, 
comparing outcomes using (1) the maximum residual, (2) a norm of residuals, (3) residuals of individual 
observations, or (4) comparison of positive and negative residuals. 
 

CONCLUSIONS 
 
The demonstrated benefits of supplementing the observation set with inverse observations include (1) 
symmetric weighted residuals, (2) an alternative method of producing a more appropriate set of 
dimensionless scaled sensitivities, and (3) the possibility of unbiased parameter estimates. These 
benefits advocate the development of a complete test case and refinement of the decision mechanism, 
which is part of the ongoing research. While observation-data redundancy is still a potential issue, it 
seems clear that there are ways to incorporate the benefits of the inverse observations, and still generate 
valid statistical summaries when needed. 
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