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ABSTRACT 
 
Surface water distribution systems are often a significant component of the water budget for regional 
groundwater systems. Long-term simulation of such systems will often have seasonal stress periods 
consisting of, for example, an irrigation season and a non-irrigation season. A small number of stress 
periods per year makes 50 – 100-year simulations practical but precludes temporal variability of a higher 
frequency, for example monthly or daily fluctuations, which may become critical during periods of drought. 
While explicit representation of variability is not possible, use of effective parameters provide an 
adjustment to compensate on a stress-period basis. This paper examines the use of an effective canal 
conductance, which is adjusted to compensate for a drought-induced reduction in the number of days that 
canals are used to deliver water. Implementation of the effective canal conductance, as a function of 
canal-flow days in a stress period, provides a more accurate representation of the potential for seepage 
from a canal under drought-impacted conditions. Approaches for two different sets of canal geometries 
are presented and their impact on simulated seepage is demonstrated. 
 

INTRODUCTION 
 
In regions where surface water is distributed from a river to adjacent land for irrigation, long-term 
groundwater simulations that account for stream-aquifer interaction are important tools for assessing the 
impacts of extended droughts on the shallow groundwater system. This work focuses on adjusting canal 
conductance to improve representation of drought in long-term simulations of a regional aquifer 
interacting with a surface-water distribution system that would typically consist of a river, diversions along 
the river, a network of canals for distributing diverted river flow, and drains to collect waste and maintain 
sufficient drainage. Canals are assumed to be built so that they can only be a source to the groundwater 
system, as a function of flow duration, stage and conductance. This assumption is an obvious 
simplification of a real system, but is consistent with typical conditions for such surface water distribution 
systems. 
 
Typically, stress periods for a long-term simulation will be seasonal consisting of, for example, an 
irrigation season and a non-irrigation season. Using a limited number of stress periods per year makes 50 
– 100 year simulations practical but precludes explicit representation of higher frequency temporal 
variability such as monthly or daily changes in surface water diversions. Typical seepage from canals to 
the underlying aquifer is on the order of 40% of the amount diverted. As a result, canal losses can be a 
significant component of the water budget and simulation of these losses and their contribution to the 
aquifer is necessary to provide a realistic water balance. Within the limits of the stress-period interval, it is 
important to accurately reflect drought impacts, such as curtailed frequency of diversion during a drought-
impacted irrigation season. 
 
Instead of simply representing the volume of drought-limited water delivered as a stress-period averaged 
rate of flow and an associated canal stage, drought conditions can be more accurately represented by 
adjusting for both the limited number of flow days and the associated canal stage. This work presents a 
method for adjusting canal conductance on a stress-period basis to reflect the limited number of diversion 
days for delivery of a drought-impacted allotment of water. This work demonstrates that applying the 
drought-impacted volume over the complete stress period introduces a considerable overestimate in the 
amount of water seeping into the shallow groundwater, and provides an adjusted conductance to produce 
a more accurate value of simulated leakage. A similar approach can be applied to develop effective 
parameters for other reasons and parameters. Primary limitations are in terms of the degree of variability 
that can be represented, and the complexity of the boundary condition. 
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METHODS 

 
An effective canal conductance, adjusted to compensate for periods when water is diverted to the canal 
for less than the full duration of the stress period, is most important in periods of drought when the 
number of canal-flow days is limited by the available supply. Implementation of the effective canal 
conductance, as a function of canal-flow days in a stress period, provides a more accurate representation 
of the potential for seepage from a canal.  
 
Typical information available for the surface water and groundwater consists of, (1) river flow, (2) volumes 
of water diverted to the canals on a monthly or seasonal basis, and (3) water level observations. To 
create a proportional adjustment to canal conductance, the diverted water volume, number of canal-flow 
days during the stress period, and basic flow equations are used to determine an adjustment for the canal 
conductance. 
 
 Assuming the use of MODFLOW-2000 [Harbaugh et al., 2000] and the SFR package [Prudic et al., 
2004], seepage between the surface water feature and the aquifer is determined by Equation (1), where 
S is the seepage rate [L3/T] 
between the surface water 
feature and aquifer, C = 
(KwL/m), K, w, L and m are the streambed hydraulic conductivity [L/T], width [L], length within the finite 
difference cell [L] and thickness [L], respectively, hs is the head in the stream and ha is the head in the 
aquifer. The term C [L2/T], is the conductance. Equation (1) indicates that S is a function of both hs and ha. 
However, when ha is below the streambed-bottom elevation seepage from the stream to the aquifer is no 
longer dependent on the aquifer head; in this case, seepage is computed using the head gradient across 
the streambed assuming that the head at the bottom of the streambed is equal to the streambed bottom 
elevation [Prudic et al., 2004]. For this work, assessing seepage between the canal and aquifer, the most 
important assumption is that the canal is above the water table so that flow from the canal to aquifer is 
independent of the head in the aquifer and the exchange between the canal and aquifer is calculated as 
in Equation (2), where Sbot is the canal bottom elevation [L]. Since the water table is below the canal 
bottom, only hs changes: Sbot 
and C are constant for all 
stress periods. For simplicity it is assumed that K, w, L and m are not time varying, but this approach can 
accommodate variation in these terms. The value of hs is simply the stage in the surface water feature, y, 
added to the streambed bottom, hs = y + Sbot.  For the canals considered in this work, or any surface 
water feature where it is reasonable to assume that the feature’s bed elevation remains above the head in 
the aquifer, (2) can be further simplified to S = Cy. The stage, y, determines the seepage rate between 
the canal and aquifer and the seepage volume, V, is then simply the rate times the duration, or V = Cyt. 
 
A mass balance, equating seepage volume produced based on stress-period averaged values of canal 
flow, with that based on the drought-limited canal-flow days, provides the starting point for equations to 
produce an equivalent conductance. Equation (3a) balances the seepage volume for the averaged 
conditions, with tA days in the stress period, with those produced for a drought limited scenario with tB 
canal-flow days. Solving for the CA leaves us with an equation for an effective conductance based on 5 
terms, four of which have 
already been determined: 
only a simple expression for 
stage in the canal during the 
drought impacted flow (yB) 
remains to be determined. For the conditions considered, yB will be greater than yA, so that the first ratio 
on the right had side of (3b) will be greater than 1, while the second ratio, with tB less than tA, will be less 
than one. For any given stress period of duration tA the ratio of canal-flow days to stress-period duration is 
a simple linear function of tB ranging from 0 to 1.0 as tB increases from severe drought conditions without 
any surface water diversions, to a full supply year in which water is diverted every day of the stress 
period. The value of CA is a linear function of yB as well, but the nonlinear stage/discharge relationship 
results in a nonlinear change in yB with a change in canal-flow days. The effect of stage and duration may 
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offset each other, at least to some extent. The following sections evaluate two different channel 
configurations to provide methods for determining a value of yB to incorporate into (3b). 
 
Manning’s Wide-Channel Approximation: an Explicit Stage Discharge Relationship 
 
 In the SFR package one 
option is to use Manning’s 
equation and a wide-channel 
assumption to determine y 
(Equation 4), where Qc is the flow in the canal [L3/T], n is the Manning’s coefficient, C* is a constant [L3/T], 
w is the channel width [L], and ς is the channel slope [L/L]. This approach is valid for channels where the 
width is much greater than the depth [Prudic et al., 2004]. Assuming a wide-channel approximation, 
Manning’s equation can be used to replace yA and yB in (3b). Simplifying, the result is an explicit equation 
that provides a simple 
adjustment to the canal 
conductance which, when 
used in simulation, 
compensates for the number 
of canal-flow days and stage 
in the canal (Equation 5). 
 
Trapezoidal Channel: an Implicit Stage Discharge Relation 
 
If the wide-channel approximation assumed for Manning’s equation is not appropriate, an alternative 
formulation must be used to determine the relationship between stage and discharge. For canals, an 
idealized trapezoidal channel provides an appropriate alternative and is used to demonstrate an approach 
that can be implemented for a variety of conveyance-channel geometries. For a trapezoidal channel with 
sixty degree walls, the 
relationship between stage 
and discharge can be 
expressed as Equation 6, 
where V is the volume of water delivered to the canal during the stress period [L3] (for a given delivery the 
value of V is fixed), 1.49 is a units-based factor assuming English units, n is the channel roughness 
coefficient, b is the channel bottom width [L], z is the canal-wall pitch [LL-1], y is the channel stage [L], and 
ςo is the channel slope [LL-1]. The stage-discharge relationship for a specific canal geometry can be 
produced by solving (6) implicitly, a relatively computationally intensive process. It is worth noting that, (1) 
the relationship between stage and discharge is linear in log space, and (2) canal-flow-days stage, 
normalized by the stress-period averaged stage, is independent of channel geometry. For this work the 
linear relation between stage and discharge was determined for a variety of channel geometries by 
implicitly solving (6) for y at 4 different levels of flow. This log-linear relation (Equation 7) is used in place 
of (6), allowing an explicit 
solution for stage as a 
function of discharge. Using 
(7) it is possible to come up with a simple expression for yA/yB, Equation 8, keeping in mind that yA and yB 
are different stages of the same canal. This relationship can now be substituted into (3b) to produce an 
expression for CA. The result, (9), is an explicit equation that provides a simple adjustment to the cell 
conductance for a trapezoidal 
channel, compensating for 
the number of canal-flow days 
and stage in the canal. 
Equation (9) is dependent on 
the number of canal-flow days 
and the value of m, which is 
based on the regression of 
stage and discharge for a 
given trapezoidal channel. 
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Figure 1. Flow rate based on canal-flow days 
and stress-period averaged, based on 24,198 
af, and using a 245-day stress period.
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Figure 3. Normalized conductance based on 
stage alone, canal-flow days alone, stress 
period averaged, and using stage and canal-
flow days combined.
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Figure 2. Normalized stage or seepage rate as 
a function of canal-flow days. Normalized 
seepage rate and stage values are the same.

 
RESULTS 

 
An example is presented to demonstrate the 
results of applying the method; the example uses 
mixed units to be consistent with those typically 
used in the field. Results are illustrated by 
adjusting conductance to compensate for a 
drought reduction in the number of canal-flow 
days by a factor of about 4, from an irrigation 
season of 245 down to a drought-impacted 61 
days, about one-fourth of the normal irrigation 
season. If the total volume delivered during the 
drought-impacted season is 24,198 acre-feet, the 
canal would flow at about 200 cfs for the 61 days 
during which canal flow occurred (Figure 1).  
 
The stage associated with a flow rate decreases 
as a function of the number of canal-flow days 
until it reaches the stress-period average value 
(Figure 2). The nonlinear relation between stage 
and number of canal-flow days reflects both that 
the flow is inversely proportional to the number of 
flow days, and the nonlinear relation between 
stage and discharge. Figure 2 includes the point 
representing the example of 61 days of canal flow 
during the 245 stress period, having a stage of 
about 2.5 feet, or about 2.3 times the averaged 
stage.  
 
The seepage rate equals the stage multiplied by 
conductance. Using a constant conductance, 
seepage rate and stage are identical functions of 
the proportion of canal-flow days (Figure 2). 
 
Using (3b) to adjust canal conductance 
compensates for the averaging inherent in 
assigning the delivered volume over the entire 
stress period. Figure 3 plots normalized 
conductance for: stress-period averaged 
(constant at 1.0) and adjustments based on 
canal-flow days, stage, and Equation 3b (the 
combination of canal-flow days and stage). Figure 
3 includes the point for the drought-impacted 61-
day irrigation season. The first two adjustments 
provide perspective on stage and duration 
impacts. The stage increase tends to provide 
some offset to the decreasing canal-flow days, 
but the effect of duration has a larger impact than 
stage, so the net result is an adjusted 
conductance smaller than the original for any 
value of canal-flow days. 
 
Seepage as a function of canal-flow days is a 
direct reflection of the adjusted conductance. For 
a given volume of canal delivery Figure 4 
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Figure 4. Normalized seepage. Stress period 
averaged and using stage and canal-flow days.

indicates that total seepage is greatest using the 
stress period averaged approach (no 
conductance adjustment), with increasing 
differences as the number of canal-flow days 
decrease. Figure 4 includes the 61-day irrigation-
season point where seepage is 57% of the stress 
period averaged. 
 
Implicit Stage From Discharge 
 
Since Figure 1 is not a function of channel 
geometry, it also applies to the trapezoidal 
channel. Figure 2 demonstrates that the 
normalized canal-flow day stage and seepage 
rates for the trapezoidal channel are identical to 
the wide channel approximation. While the stages 
or seepage rates for the two channel types may 
be quite different, normalizing by their averaged values demonstrates the similarity of how the values 
change as a function of interval duration. 
 
Performing the steps outlined by (7) – (9) the value of m was determined to be 0.6015 so that the 
exponent term in (9) ends up having a value of 0.3985, virtually the same value as the exponent in (5), 
especially considering the potential for round-off error in (6) – (9). As a result, the adjusted conductance 
for the trapezoidal channel in Figure 3 is virtually identical to the wide-channel adjusted conductance and 
Figure 4 is therefore applicable to both the wide and trapezoidal channels. 
 

DISCUSSION AND CONCLUSIONS 
 
While the two methods of calculating stage produce different stages for the same flow, they have virtually 
the same adjustments for drought-induced changes to canal-flow-days for the two channel geometries. 
This is not surprising considering they both rely on Manning’s equation and use normalized values. 
Current efforts include an analysis of the equations to demonstrate the similarities. Considering the typical 
uncertainty, it is quite reasonable to consider a single adjustment rather than have specific adjustments 
for each of the two channel geometries considered. 
 
When a canal has any days without flow the stress-period average approach will overestimate seepage. 
The impact on water budget can be inferred from Figure 3. A severe drought could easily reduce the 
canal-flow days to one-fourth of the stress period. Under such conditions using averaged values would 
simulate far too much seepage, about 70% more than would be simulated if the conductance were 
adjusted to more accurately reflect the physical conditions.  
 
This work provides an example specific to streambed conductance. However, a similar approach could be 
applied to a wide range of boundary conditions, as long as they satisfy the fundamental underlying 
assumption: that the boundary condition (e.g., head, concentration, etc…) is independent of the simulated 
values. 
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